The South African Antarctic Wind Energy Programme SAAWEP - Towards Sustainable Research

Johan Stander

2010 Project Manager 2009 Mechanical Engineer

E FACULTY

DF ENGINEERING

Contents

- The beginning
- Today
- Why a SAAWEP?
- SANAE IV The challenges
- Wind turbine technology
- SAAWEP future
- Conclusion

The beginning

- Utilising wind energy in Antarctica no novelty
- 1902 Cpt. Scott onboard the Discovery
- 1959/60 SANAE I base
- 1987 Neumayer II base (GER)
- 2003 Mawson base (AUS)
- 2007 SANAE IV
- 2008 Princess Elizabeth base (BE)
- 2009 SANAE IV

Today

- An estimated total installed capacity of 1 MW
- Wind power penetration ratio: 100 %
- Largest wind farm: 660 kW
- 2010/2012 projects:
 - SANAE IV base adding 30 kW
 - Scott base (NL): 3 x 330 kW
 - Neumayer III adding 60 kW

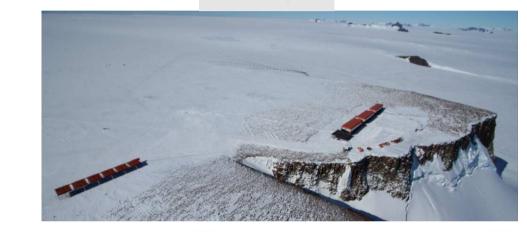
Enercon 330 KW

Why a SAAWEP?

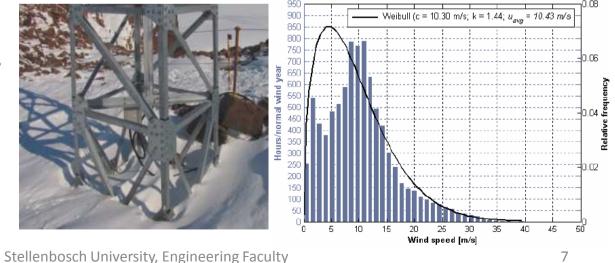
- The programme initiated by Dept. Electrical and Electronic Engineering, EML, commenced in 2007
- Funded by NRF and SANAP, managed by EML
- A need driven by:
 - increasing fuel prices
 - reduction of green house gas emissions
 - fuel spillages
 - fossil fuel dependency
 - sustainable research
 - favourable wind conditions: 10 kW wind turbine may save 9800 L/a

Why a SAAWEP?

- Aim: To promote engineering research, to develop and to implement wind energy conversion technologies at SANAE IV and in South Africa
- Engineering research: materials, structural, transport and commissioning, snow accumulation, system control, etc.
- Development: Design, manufacture, laboratory tests, full scale testing, etc.
- Implement: Environmental impact, cargo, training, construction, performance evaluation, etc.
- Promote: <u>http://research.ee.sun.ac.za/sanap</u>

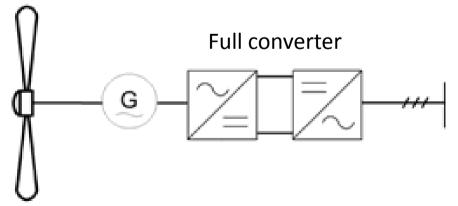

UNIVERSITY

SANAE IV – The challenges


The site

(ice, snow and rocky)

- High winds (average 10 m/s; max. 223 km/h @ 10 m AGL)
- Low temperatures (average -16 °C)



SANAE IV – The challenges

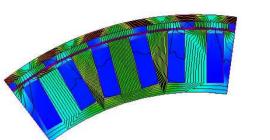
- SANAE IV power system: diesel fuelled multigenerator system supplying: electricity, heat and water
- Weak remote grid voltage stability and frequency
- Wind and turbine integration

SANAE IV – The challenges

- Logistical and equipment constraints:
 - containers and transport
 - weight
 - limited construction methods e.g. crane size
 - limited site access

Wind turbine technology




- Distinguishing design properties:
 - Robustness
 - Minimum maintenance/lubricant dependent components
 - Standard components
 - Component material selection
- SANAE IV wind turbines:
 - Simplistic control/operation
 - Optimised direct drive PM generator technology
 - Exploring new direct drive, direct grid coupled technologies

April 18, 2010

Wind turbine technology

- Electrical design
 - PM generator directly coupled, no gearbox
 - Magnets NdFeB
 - Integration: 3ph 400VAC, full converter

Electromagnetic design

Wind turbine technology

- Mechanical design
- Wind turbine:
 - Blades and nose cone: 3.6 m, GFRP, 70 m/s, black
 - Nacelle: Steel SABS 300WA
 - Tail: Steel SABS 300WA, aluminium SABS 6063-T6
 - Tower: 12 m, tilting, free-standing lattice (300WA)
 - Survival: 70 m/s and -40 °C to +20 °C
- Foundation:
 - Base plate anchored with rock bolts

Wind turbine technology

- Control design
 - operation: 15 kW, 4 m/s to 12 m/s @ 12 m AGL
 - Rotor speed and power control: combined RC braking (electrical), furling and stalling (mechanical)
 - Yaw: passively with tail
 - Power quality and integration: maximum
 - power tracking (anemometer) and

converter

SAAWEP future

- New generator technology development
- Mechanical design optimisation to fit electrical design constraints - manufacturing time and costs
- Up scaling: 15 kW \rightarrow 50 kW wind turbines
- Grid studies
- Possible expansion to Southern Ocean Islands

Conclusion

- Utilising wind energy in Antarctic is increasing
- Every project has unique challenges e.g. foundations
- The SAAWEP needs Mechanical Engineers
- SAAWEP expansions:
 - consulting
 - Southern Ocean Islands

UNIVERSITEIT STELLENBOSCH UNIVERSITY

CONTACT

Prof. Maarten Kamper

- e: <u>kamper@sun.ac.za</u>
- **t:** 021 808 4323
- Johan Stander
- e: jstander@gmail.com
- **t:** 021 808 3890

Website: http://research.ee.sun.ac.za/sanap