
An introduction to PGMs: Latent Variables JA du Preez

PGMs week 9 Learning: Latent Variables

DRAFT

• Watch the 18 series of Koller videos.

– The first situation leading to latent variables is when some of our training data is missing. The MAR
principle has to apply to enable valid parameter estimates. Although of great practical importance in
semi-supervised systems, we will not concern us much with this.

– Quite often having latent states as part of our model, can make it much more powerful. Examples of
this is the active basis pdf in a Gaussian Mixture Model (GMM, see Barber Chapter 20), the active
state in a Hidden Markov Model (HMM) or in a temporal CRF.

– However, this couples our parameters and causes our parameter space to have multiple/local optima.

– We can optimise via the EM algorithm or directly using standard optimisation techniques.

• Read Barber chapter 11 (skip 11.5).

• Summary of the EM algorithm:

We divide the variables in our model into three groups: v are the observed variables, h the latent/hidden
variables and θ the parameters. We want to maximise:

p(v|θ) =
∑
h

p(v,h|θ). (1)

Let q(h) be an arbitrary distribution over the latent variables. We can easily show that :

log p(v|θ) = L(q, θ) + KL(q ‖ p), (2)

with

L(q, θ) =
∑
h

q(h) log

[
p(v,h|θ)
q(h)

]
(3)

KL(q ‖ p) = −
∑
h

q(h) log

[
p(h|v, θ)
q(h)

]
(4)

(You can verify this by substituting and then simplifying while remembering that q(h) is a distribution.) We
note that L(q, θ) is a functional (i.e. it has an unspecified function q as parameter to optimise over – this is of
importance too when we do variational inference) and KL(q ‖ p) is the Kullback-Leibler distance between
distributions q and p. KL(q ‖ p) ≥ 0 with equality only if the two distributions coincide. This implies that
L(q, θ) is a lower bound for log p(v|θ). We can now optimise by iterating over following two-step method
until convergence is achieved:

1. In the E-step we want to maximise this lower bound w.r.t. q(h). We do so by annihilating the KL
distance i.e. by setting

q(h) = p(h|v, θ). (5)

This requires that we do inference to determine the distribution q(h). In essence this step replaces the
hidden data with a distribution for it.

2. In the M-step we hold q(h) fixed and maximise this lower bound L(q, θ) w.r.t. θ. If not already at a
maximum, this will cause the log-likelihood function log p(v|θ) to rise. Let us simplify a bit more:∑

h

q(h) log

[
p(v,h|θ)
q(h)

]
=
∑
h

q(h) log p(v,h|θ)−
∑
h

q(h) log q(h).

1

An introduction to PGMs: Latent Variables JA du Preez

The term on the right does not depend on θ and we can ignore it, leaving us with the auxiliary function

Q(θ) ≡
∑
h

q(h) log p(v,h|θ) = 〈log p(v,h|θ)〉q(h) (6)

to optimise w.r.t. θ. This is a particularly nice function to work with if our distribution is part of the
exponential family. The log will cancel with the exp leaving us with a very clean function to optimise
over.
We can also extend the M step to do a MAP estimate instead of an ML estimate – for this we need to
maximise L(q, θ) + log p(θ) w.r.t. θ.

• Exercise(s):

– Create data corresponding to a simple scalar GMM (see Barber Chapter 20 for more details if required).
Now learn the parameters of this GMM by applying the EM algorithm to the created data. Find ini-
tializations leading to different local optima. You might want to simplify this exercise even further by
assuming the variances known.

– Alternatively in Barber Example 11.2 on pg 261 is particularly nice to visualise the optimisation pro-
cess. Implement and explore it.

– If you feel the need for more excitement you can obtain an expression for the derivatives and then
verify that it approaches zero as we progress towards convergence.

– You can also directly optimise the parameters (using for instance steepest ascent optimisation) and
compare it to the result obtained via the EM algorithm.

2

