An introduction to PGMs: belief propagation JA du Preez & CE van Daalen

PGMs session 4 Inference: Belief Propagation

As you would have discovered from last week’s work, determining a full joint probability might be an extremely
expensive exercise when there are many variables. We are now going to study a number of message-passing
algorithms to do this more efficiently.

1 Preparation: Read Barber Section 5.1 — Marginal Inference.

Read Section 5.1 in Barber. This might seem short, but the Koller videos (below) will substantially expand on it.

 Section 5.1 starts out with variable elimination and then shows how this leads to the sum-product algorithm
in linear and tree-structured networks.

* This is specifically developed here for factor graphs. This consists of nodes for the individual variables that
are connected to factor nodes according to the potentials that these variables partake in. In these graphs there
are two distinct types of messages:

— From a variable node to a factor node the message is the product of all the other messages that lead
into that variable.

— From a factor node to a variable node this product (from the previous step) is multiplied with the factor
potential, and then all the other variables (except the destination variable) gets marginalised out.

2 Preparation: Watch the Koller videos on inference, variable elimina-
tion, and message passing

Watch the following videos in the Coursera course Probabilistic Graphical Models 1: Representation, Week 5:
* Knowledge Engineering & Conclusion: Knowledge Engineering (23:05)
Watch the following videos in the Coursera course Probabilistic Graphical Models 2: Inference, Week 1:

e Overview: Conditional Probability Queries (15:22)
e Overview: MAP Inference (9:47)

Variable Elimination: Variable Elimination Algorithm (16:17)

* Variable Elimination: Complexity of Variable Elimination (12:48)

Variable Elimination: Graph-Based Perspective on Variable Elimination (15:25)

Variable Elimination: Finding Elimination Orderings (11:58)
Watch the following videos in the Coursera course Probabilistic Graphical Models 2: Inference, Week 2:

* Message Passing in Cluster Graphs: Belief Propagation Algorithm (21:21)
* Message Passing in Cluster Graphs: Properties of Cluster Graphs (15:00)

* Message Passing in Cluster Graphs: Properties of Belief Propagation (9:31)
» Optional: Loopy Belief Propagation: BP in Practice (15:38)

* Optional: Loopy Belief Propagation: Loopy BP and Message Decoding (21:42)

An introduction to PGMs: belief propagation JA du Preez & CE van Daalen

Notes on these videos:

* Knowledge Engineering & Conclusion: Knowledge Engineering (23:05) is for general interest; we have not
discussed template and plate models as yet, so do not be overly worried when you encounter them.

* Overview: Conditional Probability Queries (15:22) and Overview: MAP Inference (9:47) provide overviews
of work still to be done. (Do note in Overview: MAP Inference (9:47) the example that shows that the max
of the joint is not necessarily equal to the max of the marginals.)

* The Variable Elimination videos discuss variable elimination. This is an important topic which will also find
use in later work.

* The Message Passing in Cluster Graphs videos introduce belief propagation (i.e., the sum-product / Shafer-
Shenoy algorithm). In contrast to Barber, who approaches this from a factor-graph viewpoint, Koller uses a
more general formulation that paves the way for the junction-tree algorithm (future work).

» Optional: Loopy Belief Propagation: BP in Practice (15:38) Shows some variants and tricks to improve
convergence in loopy belief propagation.

» Optional: Loopy Belief Propagation: Loopy BP and Message Decoding (21:42) shows the historical link
between loopy belief propagation and error correction coding.

* Note that the factor graph approach translates to a specific case of this more general formulation — the Bethe
cluster graph. The two types of messages that we saw in the factor graph is a simplification arising from the
fact that in a Bethe cluster graph, the sepset corresponds exactly to the particular variable on that specific
link.

e When the variable clusters are connected in loops, the algorithm might converge to the wrong solution, or
might even oscillate. Quite often though, it converges to the correct solution.

Make sure you understand the following:

* A ‘message’ really is a distribution/potential describing what the originators of the message believes about
the variables they have in common with the target cluster. The target cluster’s own opinion about itself
should not be included in this. (Otherwise you get the inflated potential runaway ego situation we so often
observe in cults, be it political or religious.)

* Initially, messages are set to unity. This just means they have no opinion about their variables yet — the
potential of the cluster rules.

¢ Numerical issues: With unnormalised potentials (as we typically use in MRFs) we run a risk of exhaust-
ing our numerical range with either under- or overflows. We basically have two avenues to cure this (see
discussion in Barber at the end of Section 5.1.2, and also Section 5.1.4):

— Normalise the messages before passing them on. The works fine, but do note that it will no longer
be possible to calculate the partition function value Z by finding the normalisation constant at any
arbitrary variable cluster. You will have to normalise all your clusters separately (resultingina Z = 1),
or alternatively find the full joint distribution and calculate Z from that.

— Use logarithmic potentials. With these we need to extend our inventory of factor operations somewhat:

Potential multiplication now change to potential summation.
% Observing evidence/conditioning is done as before.

* To do marginalisation you need to first convert your logarithmic potentials to linear form again.
However, direct/naive linearisation does not work — you immediately fall prey to the original
over/underflow problem again. The trick (known as the logsumexp trick) is to realise that:

log Ze IOg max{L }ZGL —max{L; })
= max{L;} + log(Z elimmax{Li})

e The cluster belief is the product of the cluster potential and all the messages entering it. It serves as a
pseudo-marginal distribution.

» The sepset belief is the product of the two messages travelling in opposite directions through it. It serves as
a pseudo-marginal distribution.

An introduction to PGMs: belief propagation JA du Preez & CE van Daalen

» Convergence implies calibration: This simply means that on convergence, we can choose any two of the
beliefs available (cluster as well as sepset), and calculate marginal distributions for the variable(s) they have
in common. The distributions obtained in this manner must be identical. It should not happen that one part
of the system has a different idea about the distribution of some variable(s) than what some other part has.

¢ Note

that the product of the cluster beliefs divided by the sepset beliefs is the same as the product of the

original potentials (known as reparameterisation). While they therefore result in the same joint potential, the
message passing procedure have at the same time refined them to provide the marginal distributions for each
cluster.

e Those familiar with the use of the forward-backward algorithm in the context of HMMs will see that the
belief propagation algorithm generalises that algorithm.

3 Practical: LBP for the Hamming (7,4) error-correction code

Objectives:

L]

L]

Task 1: In

Implement/use sum-product messages to calculate marginal distributions without first calculating the
full joint probability; i.e., (approximately) calculate the marginal distributions while avoiding the ex-
ponential blow-up of the full joint distribution.

Verify that after convergence the system achieves calibration; i.e., the various beliefs in the system
agrees on the marginal distributions of the variables it knows about.

Verify the re-parameterisation property; i.e., that we can recover the full joint distribution from the
various cluster and sepset beliefs. Of course we normally would not want to do this, since it once again
introduces the exponential factor size blow-up.

(Optional) Compare the behaviour of (the more generic) cluster graphs with that of factor graphs.

the following, use only the basic factor operations we encountered previously — we first want to foster

an understanding of the basics of message passing. We are going to re-implement the hard-decoding (BSC)
version of the Hamming (7,4) code of last week, but this time we will embed them in a special graph structure
called a cluster graph (CG). Construct it as follows:

(@)

(b)

©

Now

(d)

First construct all the factors as you did in Session 3. Also observe and reduce the factors using your
same choice of received bits, g, . . ., rg as for Session 3.

The scope of each factor is the set of random variables it contains. In contrast to Session 3, we are not
going to now create a joint factor by multiplying all available factors out; we instead want to arrange
them into a graph structure. However, if the scope of a factor is a subset of another factor, we can
(optionally) simplify things by assimilating it in that other factor; we do this by simply multiplying the
factors. (Note, when a factor is a subset of more than one other factor, we will only multiply it out with
one of them; i.e., each factor occurs only once in the system.) Absorb all the p(r;|b;) factors (that have
been observed and reduced) into appropriate factors.

The (in this case three) factors you are now left with, need to be linked up in a graph structure which
obeys the running intersection property (RIP). RIP requires that for all variables X; in the PGM, when
considering only those nodes/clusters containing X; (as well as the links between them), the resulting
sub-graph must form a tree. (Study the Koller video Message Passing in Cluster Graphs: Properties
of Cluster Graphs (15:00) until you are clear about what RIP entails.) To form this graph involves two
steps:

¢ Decide which factors are to be linked and

* specify their sepset; i.e., the set of variables those two factors will exchange information about.
Note, the sepset is a subset of the random variables those two factors have in common.

In particular, pay careful attention to which sepsets contain by (the variable that is common to all
three parity checking factors). After having done this yourself you can confirm that you end up with
something similar to Figure [l (In this figure, the factors ®o(b;, ;) — which are the p(r;|b;) factors
— have not yet been absorbed into larger factors). We represent the clusters inside ellipses, and their
sepsets inside rectangles.

we are ready to start passing messages around between the nodes in this graph:

Since we have a loopy structure, we have to place initial messages at all relevant places (consult the
videos). Each message is a emdw DiscreteTable factor, the scope of which is being specified
by the variables in the corresponding sepset. Each message is contained in a separate such variable —

An introduction to PGMs: belief propagation JA du Preez & CE van Daalen

(e

®

(@

(h)

®
@

&)
®

you might want to consider a coding scheme such as m01 being the message that is sent from cluster
0 to cluster 1, etc. Initialise all messages as uninformative distributions (i.e., make them uniform
distributions).

Now repeatedly pass messages between the various nodes using the loopy belief propagation algorithm.
You have to determine a schedule for passing messages. For this specific application a natural option
is to go once in one direction around the loop, and then once in the other direction around the loop.
You will also have to take precautions against numerical under/overflow. For this it probably is easiest
to simply normalise each message.

Iterate/repeat this message passing until calibration is achieved between all clusters (i.e., the sepset
beliefs do not change any more). Consult the Koller video Message Passing in Cluster Graphs: Prop-
erties of Belief Propagation (9:31) for determining how a cluster belief and a sepset belief is calculated.
You will have to decide how you are going to quantify such a change in beliefll. When a graph is cali-
brated, all beliefs are in agreement as to what the distribution for the variable(s) are.

It might also be interesting to plot the convergence behaviour as the biggest change in sepset belief as
a function of the iteration number.

Decoding is complicated by the fact that picking the max of the marginal distributions is not necessarily
equivalent to picking the maximum of the joint assignment — an elegant solution for this dilemma forms
part of the MAP/max-sum message passing algorithm which we will discuss at a later stage. For now
we will have to content ourselves by interpreting the maximum values of the cluster beliefs — this
should give us a fair idea as to what is happening. (Optional:) Alternatively we can form the full joint
by making use of reparameterisation (see the last part of the Koller video Message Passing in Cluster
Graphs: Properties of Belief Propagation (9:31)) and then picking the max of the joint distribution.
The division operator in emdw will be useful here for dividing by the sepset potentials. This should
return the most likely answer.

How do the results compare with your results from last week?

Due to the small size of the problem we are considering, the computational load will be higher than
what we previously encountered. This seems to negate our very reason for doing message passing.
Confirm that you are clear why message passing can alleviate the computational load in bigger prob-
lems.

Can you create situations with bad convergence behaviour?

Investigate what happens when every pair of parity checking clusters do share by i.e a loop of by sepsets
violates the uniqueness requirement of RIP.

Task 2: You now have experience in what is involved in LBP message passing. Let’s now automate it somewhat:
Use the example file and the explanation below to implement LBP using the built-in emdw functionality.
Also compare your results with that of Task 1.

Some instructions are discussed below — see the LBP_example.cc example file for more details. And
remember that the Terminal command grep should be your friend — if you haven’t made the acquaintance
yet, now is a good time.

Some declarations you will need: Stick this in close to the top of your .cc file:

// standard library headers

#include <iostream> // cout, endl, flush, cin, cerr
#include <vector> // vector

#include <map> // map

// emdw headers

#include "emdw.hpp"

#include "discretetable.hpp"
#include "clustergraph.hpp"
#include "lbp_cg.hpp"
#include "lbu_cg.hpp"
#include "messagequeue.hpp"

// These are to avoid doing std:: and emdw:: all the time. Don’t do
// this in an .hpp file

using namespace std;

using namespace emdw;

Hint: A nice way to measure the ‘distance’ between distributions, is the Kullback-Leibler divergence (go and look it up). That is already
available for DiscreteTable via the distance member function.

An introduction to PGMs: belief propagation JA du Preez & CE van Daalen

Compiling a valid RIP cluster graph: In Task 1 above you by inspection figured out which variable(s) to
remove from certain sepsets so that the graph obeys the RIP. In a more complex system this might be
somewhat tricky. Fortunately the LTRIP (layered trees running intersection property) algorithm will
effortlessly do that for us. Consult https://arxiv.org/abs/2110.02048 for more detail (and at the same
time find out why you would prefer cluster graphs over factor graphs). This is implemented in emdw’s
ClusterGraph class. Some specifics to note:

 Collect all the relevant Factorsina vector:
vector< rcptr<Factor> > factorPtrs;
Typically we use the push_back function to add the rcptr<Factor>s to the back of this
vector. Their order is unimportant.
» Assign all the observed variables in a map<RVIdType, AnyType>:
map<RVIdType, AnyType> obsv;
The key/first part identifies the particular RV, while the value/second part allocates its observed
value. Go and check out AnyType in the userguide. You will do the assignments with something
like:
obsv[r0] = int(l); //or T(l). Note explicit type
* Now build the ClusterGraph:
// for a factor graph, use BETHE instead of LTRIP
// for a Jjunction tree, use JTREE instead of LTRIP
ClusterGraph cg(ClusterGraph::LTRIP, factors, obsv);
//cout << cg << endl;
* You can generate a graphviz .dot file of it via:
// export the graph to graphviz .dot format
cg.exportToGraphViz ("your_name_for_it");
After locating the .dot file, apply the dot command shown on your screen to generate a .pdf show-
ing the graph.
Calibrating the graph via LBP:

* Initialise the message queue and messages:

map<Idx2, rcptr<Factor> > msgs;
MessageQueue msgQ;
* Apply the relevant inference algorithm to calibrate the graph

// loopyBP_CG implements the loopy belief propagation

// (Shafer—-Shenoy) algorithm. Using loopyBU_CG instead results
// in the loopy belief update (Lauritzen-Spiegelhalter)

// algorithm.

unsigned nMsgs = loopyBP_CG(cg, msgs, msgQ);

cout << "Sent " << nMsgs << " messages before convergence\n";

And query the calibrated graph:

* Ask about the distribution of a particular RV or RVs. (You can ask about the joint of several IDs
by specifying more than one variable, separated by commas. This is only available for variables
that somewhere occur jointly in a cluster.):

// If you calibrated with loopyBU_CG, you will have to use

// queryLBU_CG here.

rcptr<Factor> gPtr = queryLBP_CG(cg, msgs, {varId})->normalize();
cout << xgPtr << endl;

* Ask about the probability that the queried RV(s) takes on a particular value:

double pl = gPtr->potentialAt ({varId}, {T(1)1});
cout << pl << " ";

Task 3 (optional): Just for comparison you might also want to repeat the above, but using factor graphs (or junc-
tion trees) instead (single variable to change in the code). Compare the results, especially in terms of con-
vergence behaviour.

Further exploration: The Koller video Optional: Loopy Belief Propagation: BP in Practice (15:38) contains a
number of very useful ideas to explore: tree reparameterisation, residual belief propagation, synchronous vs.
asynchronous propagation, and message damping. All are worthwhile to look at — some of them are being
used in Task 2 above.

An introduction to PGMs: belief propagation

JA du Preez & CE van Daalen

Do (b2, r2)

bs

@0 (bs,75)

Do (bo,70)

bo

b2

bs

Do (b3, T3

by

bo, b2

D (bo, b2, b3, bs)

|

@0 (b1,71)

b1

@o(b4,1”4)

bo, b1

D¢ (bo, b1, b3, bs)

be

b3

Do (bs,T6)

Figure 1: A cluster graph for the Hamming (7,4) error-correcting code. Note the sepset in the bottom center where
by has been omitted to achieve valid RIP. With the r;’s observed, this graph can be simplified to only an inner loop
of three clusters by assimilating each resulting @ (b;) into the @ cluster it is connected to.

	Preparation: Read Barber Section 5.1 – Marginal Inference.
	Preparation: Watch the Koller videos on inference, variable elimination, and message passing
	Practical: LBP for the Hamming (7,4) error-correction code

