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ABSTRACT
We present a means of formulating and solving graph coloring

problems with probabilistic graphical models. In contrast to the

prevalent literature that uses factor graphs for this purpose, we

instead approach it from a cluster graph perspective. Since there

seems to be a lack of algorithms to automatically construct valid

cluster graphs, we provide such an algorithm (termed LTRIP). Our

experiments indicate a signi�cant advantage for preferring cluster

graphs over factor graphs, both in terms of accuracy as well as

computational e�ciency.
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1 INTRODUCTION
Due to its learning, inference, and pattern-recognition abilities,

machine learning techniques such as neural networks, probabilistic

graphical models (PGM) and other inference-based algorithms have

become quite popular in arti�cial intelligence research. PGMs can

easily express and solve intricate problems with many dependencies,

making it a good match for problems such as graph coloring. The

PGM process is similar to aspects of human reasoning, such as the

process of expressing a problem by using logic and observation, and

applying inference to �nd a reasonable conclusion. With PGMs it is

often possible to express and solve a problem from easily formulated

relationships and observations, without the need to derive complex

inverse relationships. This can be an aid to problems with many

inter-dependencies that cannot be separated into independent parts

to be approached individually and sequentially.

Although the cluster graph topology is well established in the

PGM literature [8], the overwhelmingly dominant topology en-

countered in literature is the factor graph. We speculate that this is
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at least partially due to the absence of algorithms to automatically
construct valid cluster graphs, whereas factor graphs are trivial to

construct. To address this we detail a general purpose construction

algorithm termed LTRIP (Layered Trees Running Intersection Prop-

erty). We have been covertly experimenting with this algorithm for

a number of years [4, 17].

The graph coloring problem originated from the literal color-

ing of planar maps. It started with the four color map theorem,

�rst noted by Francis Guthrie in 1852. He conjectured that four

colors are su�cient to color neighboring counties di�erently for

any planar map. It was ultimately proven by Kenneth Appel and

Wolfgang Haken in 1976 and is notable for being the �rst major

mathematical theorem with a computer-assisted proof. In general,

the graph coloring problem deals with the labeling of nodes in an

undirected graph such that adjacent nodes do not have the same

label. The problem is core to a number of real world applications,

such as scheduling timetables for university subjects or sporting

events, assigning taxis to customers, and assigning computer pro-

gramming variables to computer registers [3, 5, 12]. As graphical

models got popular, message passing provided an exciting new ap-

proach to solving graph coloring and (the closely related) constraint

satisfaction problems [9, 15]. For constraint satisfaction the survey

propagation message passing technique seems to be particularly

e�ective [2, 7, 10, 13]. These techniques are primarily based on the

factor graph PGM topology.

The work reported here forms part of a larger project aimed

at developing an e�cient alternative for the above message pass-

ing solutions to graph coloring. Cluster graphs and their e�cient

con�guration are important in that work, hence our interest in

those aspects here. Although we do also provide basic formulations

for modeling graph coloring problems with PGMs, this is not the

primary focus of the current paper, but instead only serves as a

vehicle for comparing topologies.

This paper is structured as follows. Section 2 shows how the

constraints of a graph coloring problem can be represented as

“factors”. Furthermore, it is shown how these factors are linked up

into graph structures on which inference can be applied. Section 3

discusses the factor graph and cluster graph topologies, as well

as algorithms for automatically con�guring them. The former is

trivial, for the latter we provide the LTRIP algorithm in Section 3.3.

Section 4 then integrates these ideas by expressing the well known

Sudoku puzzle (an instance of a graph coloring problem) as a PGM.

The experiments in Section 5 shows that, especially for complex

cases, the cluster graph approach is simultaneously faster and more

accurate. The last two sections consider possible future exploration

and �nal conclusions.

https://doi.org/10.1145/3132711.3132717
https://doi.org/10.1145/3132711.3132717
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2 GRAPH COLORINGWITH PGMS
This section provides a brief overview of graph coloring and PGMs,

along with techniques of how to formulate a graph coloring problem

as a PGM. We also explore the four color map theorem and illustrate

through an example how to solve these and similar problems.

2.1 A general description of graph coloring
problems

Graph coloring problems are NP-complete – easily de�ned and

veri�ed, but can be di�cult to invert and solve. The problem is of

signi�cant importance as it is used in a variety of combinatorial

and scheduling problems.

The general graph coloring problem deals with attaching labels

(or “colors”) to nodes in an undirected graph, such that (a) no two

nodes connected by an edge may have the same label, and (b) the

number of di�erent labels that may be used is minimized. Our focus

is mostly on the actual labeling of a graph.

A practical example of such a graph coloring is the classical four

color map problem that gave birth to the whole �eld: a cartographer

is to color the regions of a planar map such that no two adjacent

regions have the same color. To present this problem as graph

coloring, an undirected graph is constructed by representing each

region in the map as a node, and each boundary between two

regions as an edge connecting those two corresponding nodes.

Once the problem is represented in this form, a solution can be

approached by any typical graph coloring algorithm. An example

of this parametrization can be seen in Figure 1 (a) and (b); we refer

to (c) and (d) later on.
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Figure 1: (a) A four color graph problem containing regions
A toG, with (b) its graph coloring representation, (c) themax-
imal cliques within the graph, and (d) a cluster graph con�g-
uration for this problem. The ellipses represent the clusters
and the boxes the sepsets – see themain text formore detail.

2.2 PGMs to represent graph coloring problems
PGMs are used as a tool to reason about large-scale probabilistic

systems in a computationally feasible manner. They are known for

their powerful inference over problems with many interdependen-

cies. It is often useful for problems that are di�cult to approach

algorithmically, with graph coloring being a speci�c example.

In essence a PGM is a compact representation of a probabilistic

space as the product of smaller, conditionally independent, distribu-

tions called factors. Each factor de�nes a probabilistic relationship

over the variables within its associated cluster – a cluster being a

set of random variables. For discrete variables this results in a dis-

crete probability table over all possible outcomes of these variables.

Instead of explicitly getting the product of these factors (which typi-

cally is not computationally feasible), a PGM connects them into an

appropriate graph structure. Inference is done by passing messages

(or beliefs) over the links in this structure until convergence is ob-

tained. In combination with the initial factor distributions, these

converged messages can then be used to obtain the (approximate)

posterior marginal distributions over subsets of variables.

To factorize a graph coloring problem, we �rst need to param-

etrize the problem probabilistically. This is achieved by allowing

each node in the graph to be represented by a discrete random

variable Xi that can take on a number of states. For graph coloring

these states are the available labels for the node; e.g. four colors in

the case of the four color map problem.

Now that we have the random variables of our system, and their

domains, we need to capture the relationship between these vari-

ables in order to represent it as factors in our PGM. For graph

coloring, no two adjacent nodes may have the same color, therefore

their associated random variables may not have the same state. One

representation of this system would then be to capture this relation-

ship using factors with a scope of two variables, each taken as an

adjacent pair of nodes from the coloring graph. Although this is a

full representation of the solution space, there is a trade-o� between

accuracy and cluster size (we use size to mean cardinality) [14].

A clique is de�ned as a set of nodes that are all adjacent to each

other within the graph, and a maximal clique is one that is not fully

contained inside any other clique. To maximize the useful scope

of factors, we prefer to de�ne our factors directly on the maximal

cliques of the graph. (We use the terms clique and cluster more or

less interchangeably.) We then set the discrete probability tables

of these factors to only allow states where all the variables are

assigned di�erent labels. In the next section we give an example of

this.

After �nalizing the factors we can complete the PGM by linking

these factors in a graph structure. There are several valid structure

variants to choose from – in this paper we speci�cally focus on

factor graph vs the cluster graph structures. In the resulting graph

structure, linked factors exchange information with each other

about some, and not necessarily all, of the random variables they

have in common. These variables are known as the separation set,

or “sepset” for short, on the particular link of the graph. Whichever

graph structure we choose must satisfy the so-called running inter-

section property (RIP) [8, p.347]. This property stipulates that for

all variables in the system, any occurrence of a particular variable

in two distinct clusters should have a unique (i.e. exactly one) path

linking them up via a sequence of sepsets that all contain that par-

ticular variable. Several examples of this are evident in Figure 1 (d).

In particular note the absence of the E variable on the sepset be-

tween the {B,E,G} and {E,D,G} clusters. If this was not so there

would have been two distinct sepset paths containing the variable E
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between those two clusters. This would be invalid, broadly because

it causes a type of positive feedback loop.

After establishing both the factors as well as linking them in a

graph structure, we can do inference by using one of several belief

propagation algorithms available.

2.3 Example: The four color map problem
We illustrate the above by means of the four color map problem. The

example in Figure 1 can be expressed by the seven random variables

A toG , grouped into �ve maximal cliques as shown. There will be no

clique with more than four variables (otherwise four colors would

not be su�cient, resulting in a counter-example to the theorem).

These maximal cliques are represented as factors with uniform

distributions over their valid (i.e. non-con�icting) colorings. We

do so by assigning either a possibility or an impossibility to each

joint state over the factor’s variables. More speci�cally we use a

non-normalized discrete table and assign a “1” for outcomes where

all variables have di�ering colors, and a “0” for cases with duplicate

colors.

For example the factor belief for the clique {A,C,D, F } of the

puzzle in Figure 1 is shown in Table 1. These factors are connected

into a graph structure – such as the cluster graph in Figure 1 (d).

We can use belief propagation algorithms on this graph to �nd

posterior beliefs.

Random variables→ A C D F

State→ 1 2 3 4 1 ← p (A,C,D, F )
1 2 4 3 1 non-normalized

1 3 2 4 1

1 3 4 2 1

...

4 3 2 1 1

elsewhere 0

Table 1: A discrete table capturing all possible combinations
of outcomes for {A,C,D, F }.

We successfully tested this concept on various planar maps of

size 100 up to 8000 regions. These were generated by �rst generating

super pixels using the SLIC algorithm [1] to serve as the initially

uncolored regions.

We hypothesize that systems con�gured as described above,

utilizing only binary probabilities, always preserve all possible solu-

tions – as yet we have found no counterexample to this. (Although

this certainly is not true of loopy graphs making use of non-binary

probabilities). The underlying reason seems to be that a state con-

sidered as possible within a particular factor will always be retained

as such except if a message from a neighboring factor �ags it as

impossible. In that case it is of course quite correct that it should

be removed from the spectrum of possibilities.

However, in this four color map case the space of solutions can

in principle be prohibitively large. We force our PGM to instead

�nd a particular unique solution, by �rstly �xing the colors in

the largest clique, and secondly by very slightly biasing the other

factor probabilities towards initial color preferences. This makes

it possible to pick a particular unique coloring as the most likely

posterior option. An example of a graph of 250 regions can be seen

in Figure 2.

Figure 2: A generated planar map resulting from a PGM col-
oring the 250 regions into four colors.

3 FACTOR VS CLUSTER GRAPH TOPOLOGIES
The graph structure of a PGM can make a big di�erence in the speed

and accuracy of inference convergence. That said, factor graphs

are the predominant structure in literature – surprisingly so since

we found them to be inferior to a properly structured cluster graph.

Cluster graphs allow for passing multivariate messages between

factors, thereby maintaining some of the inter-variable correlations

already known to the factor. This is in contrast to factor graphs

where information is only passed through univariate messages,

thereby implicitly destroying such correlations.

A search on scholar.google.com (conducted on June 28, 2017) for

articles relating to the use of factor graphs versus cluster graphs in

PGMs returned the following counts:

• 5590 results for: probabilistic graphical models "factor graph",
• 661 results for: probabilistic graphical models "cluster graph", and

• 49 results for: probabilistic graphical models "factor graph" "clus-
ter graph".

Among the latter 49 publications (excluding four items authored

at our university), no cluster graph constructions are found other

than for Bethé / factor graphs, junction trees, and the clustering of

Bayes networks. We speculate that this relative scarcity of cluster

graphs points to the absence of an automatic and generic procedure

for constructing good RIP satisfying cluster graphs.

3.1 Factor graphs
A factor graph, built from clusters Ci , can be expressed in cluster

graph notation as a Bethé graph F . For each available random

variable X j , F contains an additional cluster Cj = {X j }. Their

associated factors are all uniform (or vacuous) distributions and

therefore does not alter the original product of distributions. Each

cluster containing X j , is linked to this vacuous cluster Cj . This

places Cj at the hub of a star-like topology with all the various X j
subsets radiating outwards from it. Due to this star-like topology

the RIP requirement is trivially satis�ed.

The setup of a factor graph from this de�nition is straightforward,

the structure is deterministic and the placements of sepsets are well

de�ned. Figure 3 provides the factor graph for the factors shown in

Figure 1.
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Figure 3: The Bethé factor graph topology applicable to Fig-
ure 1. Note the univariate sepsets arranged in a star-like
topology.

3.2 Cluster graphs
A cluster graphT , built from clustersCi , is a non-unique undirected

graph, where

(1) no cluster is a subset of another cluster, Ci * Cj for all i , j ,
(2) the clusters are used as the nodes,

(3) the nodes are connected by non-empty sepsets Si, j ⊆ Ci∩Cj ,

(4) and the sepsets satisfy the running intersection property.

Point (1) is not strictly necessary (see for instance the factor graph

structure), but provides convenient computational savings. It can al-

ways be realized by simply assimilating non-obliging clusters into a

superset cluster via distribution multiplication. Refer to Figure 1 (d)

for an example of a typical cluster graph.

Although Koller et al. provides extensive theory on cluster graphs,

they do not provide a general solution for the constructing thereof [8,

p.404]. Indeed, they state that “the choice of cluster graph is gen-

erally far from obvious, and it can make a signi�cant di�erence to

the [belief propagation] algorithm.” Furthermore, the need for such

a construction algorithm is made clear from their experimental

evidence, which indicates that faster convergence and an increase

in accuracy can be obtained from better graph structuring. There-

fore, since cluster graph theory is well established, an e�cient and

uncomplicated cluster graph construction algorithm will be useful.

We provide the LTRIP algorithm for this purpose.

3.3 Cluster graph construction via LTRIP
The LTRIP algorithm is designed to satisfy the running intersection

property for a cluster graph T by layering the interconnections

for each random variable separately into a tree structure, and then

superimposing these layers to create the combined sepsets. More

precisely, for each random variableXi available inT , all the clusters

containingXi are inter-connected into a tree-structure – this is then

the layer for Xi . After �nalizing all these layers, the sepset between

cluster nodes Ci and Cj in T , is the union of all the individual

variable connections over all these layers.

While this procedure guarantees satisfying the RIP requirement,

there is still considerable freedom in exactly how the tree-structure

on each separate layer is connected. In this we were guided by the

assumption that it is bene�cial to prefer linking clusters with a

high degree of mutual information. We therefore chose to create

trees that maximizes the size of the sepsets between clusters. The

full algorithm is detailed in Algorithm 1 with an illustration of the

procedure in Figure 4. Note that other (unexplored) alternatives are

possible for the connectionWeights function in the algorithm. In

particular, it would be interesting to evaluate information theoretic

considerations as criterion.

Algorithm 1 LTRIP (V )

Note: input V is the set of clusters {C1, . . . ,CN }, with subsets

already assimilated into their supersets

1: // Empty set of sepsets

2: S := {}

3: for each random variable X found withinV do
4: // This inner loop procedure is illustrated in Figure 4 (a)

5: VX := set of clusters inV containing X
6: WX :=connectionWeights(VX )
7: // Add X to the appropriate sepsets

8: PX := max spanning tree overVX using weightsWX
9: for each edge (i, j ) in PX do

10: if sepset Si, j already exists in S then
11: Si, j . insert(X )
12: else
13: S . insert(Si, j = {X } )
14: end if
15: end for
16: end for
17: T := cluster graph ofV connected with sepsets S

18: return T

19: function connectionWeights(VX )

20: WX := {wi, j =
���Ci ∩ Cj

��� for Ci ,Cj ∈ VX , i , j}

21: // Emphasize nodes strongly connected to multiple nodes

22: m := max(WX )
23: for i do
24: // Number of maximal edges on this node

25: ti := number of adjacent nodes j for which wi, j =m
26: // Add to each edge touching this node

27: for j do
28: wi, j += ti
29: end for
30: end for
31: returnWX
32: end function

4 MODELING SUDOKU VIA PGMS
The Sudoku puzzle is a well known example of a graph coloring

problem. A player is required to label a 9 × 9 grid using the in-

tegers “1” to “9”, such that 27 selected regions have no repeated

entries. These regions are the nine rows, nine columns, and nine

non-overlapping 3×3 sub-grids of the puzzle. Each label is to appear

exactly once in each region. If a Sudoku puzzle is under-constrained,

i.e. too few of the values are known beforehand, multiple solutions

are possible. A well de�ned puzzle should have only a unique so-

lution. We illustrate these constraints with a scaled-down 4 × 4

Sudoku (with 2 × 2 non-overlapping sub-grids) in Figure 5 (a).

We use the Sudoku puzzle as a proxy for testing graph coloring

via PGMs, since this is a well known puzzle with many freely

available examples. However, it should be kept in mind that solving

Sudoku puzzles per se is not a primary objective of this paper (in

related work not reported on here we have developed a PGM system

capable of easily solving all Sudoku puzzles we have encountered).

We now show how to construct a PGM for a Sudoku puzzle, by
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Figure 4: Illustration of constructing a cluster graph via
the LTRIP procedure. The �ve clusters to be linked are
{B,C,D,E, F }, {A,B,C,D}, {B,E, F }, {B,C,G} and {A,B,G}. (a) De-
tails the procedure for joining up all clusters containing
variable B into a tree. In sub-step (i) we set the initial con-
nection weights as the number of variables shared by each
cluster pair. In sub-step (ii) we identify the current maximal
connection weight to bem := 3. In sub-step (iii) we note for
each cluster how many of its links have maximal weightm.
This number is added to all its connection weights. This em-
phasizes clusters that are strongly connected to others. In
sub-step (iv) we use these connection weights to form amax-
imal spanning tree connecting all occurrences of variable B.
(b) Similarly constructed connection trees for all other vari-
ables are superimposed to yield the �nal cluster graph and
its sepsets.
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Figure 5: (a) An example of a 4×4 scaled Sudoku grid, with (b)
its coloring graph, and (c) a non-unique coloring solution.

following the same approach as described for the four color map

problem.

4.1 Probabilistic representation
For the graph coloring and probabilistic representation of the Su-

doku puzzle, each grid entry is taken as a node, and all nodes that

are prohibited from sharing the same label are connected with edges

as seen in Figure 5 (b). It is apparent from the graph that each of

the Sudoku’s “no-repeat regions”, is also a maximal clique within

the coloring graph.

The probabilistic representation for the scaled-down 4×4 Sudoku

is, therefore, 16 random variables A to P , each representing a cell

within the puzzle. The factors of the system are set up according

to the 12 cliques present in the coloring graph. Three examples of

these factors, a row constraint, a column constraint and a sub-grid

constraint, are respectively {A,B,C,D}, {A,E, I ,M }, and {A,B,E, F }.
The entries for the discrete table of {A,B,C,D} are exactly the same

as those of Table 1. The proper 9 × 9 sized Sudoku puzzle used in

our experiments are set up in exactly the same manner than the

scaled down version, but now using 27 cliques each of size nine.

We should also note that in the case of Sudoku puzzles, some

of the values of the random variables are given beforehand. To

integrate this into the system, we formally “observe” that variable.

There are various ways to deal with this, one of which is to purge

all the discrete distribution states not in agreement with the obser-

vations. Following this, the variable can be purged from all factor

scopes altogether.

4.2 Graph structure for the PGM
We have shown how to parametrize the Sudoku puzzle as a coloring

graph, and furthermore, how to parametrize the graph probabilisti-

cally. This captures the relationships between the variables of the

system via discrete probability distributions. The next step is to

link the factors into a graph structure. We outlined factor graph

construction in Section 3.1, as well as cluster graph construction

via LTRIP in Section 3.3. We apply these two construction methods

directly to the Sudoku clusters thereby creating structures such as

the cluster graph of Figure 6.
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Figure 6: A cluster graph construction for the 4 × 4 Sudoku
clusters.

4.3 Message passing approach
For the sake of brevity we do not discuss the detail of belief prop-

agation techniques here – this is adequately available from many

resources, including our references. However, for completeness we

list some settings we applied:

• For the inference procedure we used belief update procedure,

also known as the Lauritzen-Spiegelhalter algorithm [11],

• The convergence of the system, as well as the message pass-

ing schedule, are determined according to Kullback-Leibler

divergence between the newest and immediately preceding

sepset beliefs.

• Max-normalization and max-marginalization are used in or-

der to �nd the maximum posterior solution over the system.

• To make e�cient use of memory and processing resources

all discrete distributions support sparse representations.
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5 EXPERIMENTAL INVESTIGATION
As stated earlier, factor graphs are the dominant PGM graph struc-

ture encountered in the literature. This seems like a compromise,

since cluster graphs have traits that should enable superior per-

formance. In this section we investigate the e�ciency of cluster

graphs compared to factor graphs by using Sudoku puzzles as test

cases.

5.1 Databases used
For our experiments, we constructed test examples from two sources,

(a) 50 9 × 9 Sudoku puzzles ranging in di�culty taken from Project

Euler [6], and (b) the “95 hardest Sudokus sorted by rating” taken

from Sterten [16]. All these Sudoku problems are well-de�ned with

a unique solution, and the results are available for veri�cation.

5.2 Purpose of experiment
The goal of our experiments is to investigate both the accuracy

as well as the e�ciency of cluster graphs as compared to factor

graphs. Our hypothesis is that properly connected cluster graphs,

as constructed with the LTRIP algorithm, will perform better during

loopy belief propagation than a factor graph constructed with the

same factors.

Mateescu et al. [14] shows that inference behavior di�ers with

factor complexities. A graph with large clusters is likely to be com-

putationally more demanding than a graph with smaller clusters

(when properly constructed from the same system), but the pos-

terior distribution is likely to be more precise. We therefore want

to also test the performance of cluster graphs compared to factor

graphs over a range of cluster sizes.

5.3 Design and con�guration of the experiment
Our approach is to set up Sudoku tests with both factor graphs and

cluster graphs using the same initial clusters. With regard to setting

up the PGMs, we follow the construction methodology outlined in

Section 4.

In order to generate graphs with smaller cluster sizes, we strike

a balance between clusters of size two using every adjacent pair of

nodes within the coloring graph as described in Section 2.2, and

using the maximal cliques within the graph, also described in that

section. We do so by generating M-sized clusters from an N vari-

ables clique (where M ≤ N ). We split the cliques by sampling all

M-combination of variables from the N variable clique, and keep-

ing only a subset of the samples, such that every pair of adjacent

nodes from the clique is represented at least once within one of the

samples.

For experiments using the Project Euler database we construct

Sudoku PGMs with cluster sizes of three, �ve, seven, and nine

variables in this manner. This results in graphs of 486, 189, 108 and

27 clusters respectively. We compare the run-time e�ciency and

solution accuracy for both factor and cluster graphs constructed

from the same set of clusters.

On the much harder Sterten database PGMs based on cluster

sizes less than nine was very inaccurate. We therefore limit those

experiments to only clusters with size nine.

5.4 Results and interpretation
Figure 7 shows the results we obtained.

Cluster graphs showed superior accuracy for all the available test

cases. We stress the fact that from our results, whenever a cluster

graph failed to obtain a valid solution the corresponding factor

graph also failed. However, it happened regularly that a cluster

graph succeeded where a factor graph failed, especially so in the

more trying con�gurations.

In the case of small clusters factor graphs apparently are faster

than cluster graphs. Since cluster graphs built from small clusters

are getting closer to factor graphs in terms of sepset sizes, this is

unexpected. We expected the execution speed to also get closer to

each other in this case.

As the cluster sizes increase, especially so when the problem do-

main becomes more di�cult, the cluster graphs clearly outperform

the factor graphs in terms of execution speed. Two explanations

come to mind. Firstly, with the larger sepset sizes the cluster graph

needs to marginalize out fewer random variables when passing mes-

sages over that sepset. Since marginalization is one of the expensive

components in message passing, this should result in computational

savings. Secondly, the larger sepset sizes allow factors to pass richer

information to its neighbors. This speeds up the convergence rate,

once again resulting in computational savings.

6 FUTUREWORK
The LTRIP algorithm is shown to produce well constructed graphs.

However, the criteria for building the maximal spanning trees in

each layer can probably bene�t from further re�nement. In particu-

lar we suspect that taking the mutual information between factors

into account might prove useful.

Our graph coloring parametrization managed to solve certain

Sudoku puzzles successfully, as well as assigning colors to the four

color map problem. This is a good starting point for developing

more advanced techniques for solving graph coloring problems.

In this paper we evaluated our cluster graph approach on a

limited set of problems. We hope that the LTRIP algorithm will

enhance the popularity of these problems, as well as other related

problems. This should provide evaluations from a richer set of

conditions, contributing to a better understanding of the merits of

this approach.

7 CONCLUSION
The objective of this study was a) to illustrate how graph coloring

problems can be formulated with PGMs, b) to provide a means for

constructing proper cluster graphs, and c) to compare the perfor-

mance of these graphs to the ones prevalent in the current literature.

The main contribution of this paper is certainly LTRIP, our pro-

posed cluster graph constructing algorithm. The cluster graphs

produced by LTRIP show great promise in comparison to the stan-

dard factor graph approach, as demonstrated by our experimental

results.
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Figure 7: The results of our test cases. Note that whenever a cluster graph failed to obtain a valid solution, the corresponding
factor graph also failed. In (b) we only show results for equivalent factor graph and cluster graph posteriors.
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