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Two-Dimensional Cartesian Air-Gap Element
(CAGE) for Dynamic Finite Element Modeling of

Electrical Machines With a Flat Air Gap
R. Wang, H. Mohellebi, T. J. Flack, M. J. Kamper, J. D. Buys, and M. Feliachi

Abstract—This paper extends the air-gap element (AGE)
to enable the modeling of flat air gaps. AGE is a macroele-
ment originally proposed by Abdel-Razek et al. for modeling
annular air gaps in electrical machines. The paper presents
the theory of the new macroelement and explains its imple-
mentation within a time-stepped finite-element (FE) code.
It validates the solution obtained by using an FE mesh with
a discretized air gap. It then applies the model to deter-
mine the open-circuit electromotive force of an axial-flux
permanent-magnet machine and compares the results with
measurements.

Index Terms—Air gaps, finite-element methods, linear mo-
tors, magnetic fields, mesh generation, permanent magnet
generators.

I. Introduction

THE air-gap element (AGE) was originally proposed by
Abdel-Razek et al. [1], [2] for the modeling of the an-

nular air-gap region in electrical machines. The AGE re-
places the finite-elements, which would normally be used to
discretize the air-gap, with a single macro element. This
macro-element is based on the analytical solution of the
air-gap field. The main advantages of the AGE are: the
ease with which relative motion between rotor and stator
is treated (no need for re-meshing the air-gap); greater ac-
curacy, since the air-gap field is related to its analytical
solution; the avoidance of finite-elements with poor aspect
ratios, or alternatively the use of a high peripheral den-
sity of nodes. The main disadvantage is that the resulting
stiffness matrix has a large profile, especially if the number
of nodes on the AGE boundary is large. This can lead to
large CPU times, although a method for alleviating this
problem is given in [3].
Since a typical rotating machine has an annular air-gap,

the AGE was initially derived for the polar coordinate sys-
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tem. The modeling of some special electrical machines such
as the linear machine or the disc-type rotating machine

x1 x1 + x0
0

air-gap

rotor

y

x

2 s − 11 3 4

n − 2 n

stator

C.A.G.E.

n − 1

s

s + 4s + 3s + 2s + 1

a

b

Fig. 1. Solution domain of the CAGE

requires a basic reformulation of the AGE, in order to deal
with the rectangular shape of the air-gap. Since this is as-
sociated with the Cartesian coordinate system it is neces-
sary to derive the AGE for Cartesian problems. This paper
presents the development of a Cartesian Air-Gap Element
(CAGE). The new CAGE is validated by comparison with
results obtained using the standard FE method, in which
the air-gap is discretized. The application of the CAGE is
also illustrated by a typical case study.

II. Cartesian Air-Gap Element Model

Consider a generic linear machine, for which the air-gap
is as shown in Fig. 1. Clearly, in the air-gap region there
is no current, and the reluctivity is that of free space, νo.
In Cartesian coordinates the field in the air-gap region is
therefore governed by:

∂2A(x, y)

∂x2
+

∂2A(x, y)

∂y2
= 0 (1)

in which A(x, y) denotes the z-directed component of the
magnetic vector potential. Like conventional electrical ma-
chines, special electrical machines such as the axial flux
and the linear machine also exhibit structural periodicity
which in turn leads to periodicity in the magnetic field dis-
tribution. In this paper the periodicity is taken to be of
the form:

A(x, y) = A(x+ xo, y) (2)



where xo is the period of the function A(x, y). Applying
the technique of separation of variables and applying the
boundary condition of (2), the solution to (1) is

A(x, y) =Fo · y +Go +

∞
∑

n=1

(Fn · eλny +Gn · e−λny)

·(Hn cosλnx+Kn sinλnx). (3)

where λn = ±2nπ/xo and Fo, Go, Fn, Gn, Hn, Kn are
constants which are to be determined.
In order to maintain the continuity of A(x,y) at the tran-

sition between classical finite-elements and the CAGE (i.e.
the lines y = a and y = b), the following boundary condi-
tion must be satisfied:

A(x, c) =

l
∑

i=k

αi(x, c) ·A
b
i (4)
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Fig. 2. Definition of function αi(x, c)

where Ab
i is the nodal value of the magnetic vector po-

tential at node i on the CAGE boundary, αi(x, c) is the
Lagrange polynomial defined from the shape functions of
the adjacent classical elements, and

k =

{

1 and l = s if c = a,
s+ 1 and l = t if c = b.

The nodal shape function αi(x, c) for the first order tri-
angular element is illustrated in Fig. 2. This may be rep-
resented as:

αi(x, c) =







































x−xi−1

xi−xi−1
if xi−1 ≤ x ≤ xi

x−xi+1

xi−xi+1
if xi ≤ x ≤ xi+1

0 if x1 ≤ x ≤ xi−1

0 if xi+1 ≤ x ≤ x1 + xo

(5)

To facilitate further mathematical manipulation, Eq. (5)
is expanded into a Fourier series:

αi(x, c) = a0i +
∞
∑

n=1

[ani cosλnx+ bni sinλnx] (6)

where a0i, ani and bni may be found as:















































a0i=
xi+1−xi−1

xo

ani=− 4
xo

· 1
λ2
n

[ 1
xi−xi−1

sin λn(xi+xi−1)
2 sin λn(xi−xi−1)

2

+ 1
xi−xi+1

sin λn(xi+1+xi)
2 sin λn(xi+1−xi)

2 ]

bni=
4
xo

· 1
λ2
n

[ 1
xi−xi−1

sin λn(xi−xi−1)
2 cos λn(xi+xi−1)

2

+ 1
xi−xi+1

sin λn(xi+1−xi)
2 cos λn(xi+1+xi)

2 ]

(7)
The constants in Eq. (3) may now be found by equating

A(x, a) and A(x, b) obtained from Eq. (3) with the respec-
tive terms obtained by substituting Eq. (6) into Eq. (4).
The final result is:

A(x, y) =

t
∑

i=1

αε
i (x, y) ·A

b
i (8)

where αε
i (x, c) is given by:

αε
i (x, c) =

y − c

c′ − c
·
aoi
2

+

∞
∑

n=1

eλn(y−c) − eλn(c−y)

eλn(c′−c) − eλn(c−c′)

·(ani cosλnx+ bni sinλnx). (9)

and

c =

{

a and c′ = b if i ∈ {1, 2, . . . , s}
b and c′ = a if i ∈ {s+ 1, . . . , t}

The energy functional for the air-gap, [S]ε, is:

Fε =
1

µo

∫ ∫

Sε

B2

2
dSε (10)

By substituting for B in Eq. (10) using B = ∇×A, where
A(x, y) is given by Eq. (8) and (9), and then differentiating
with respect to Ai for i = 1 . . . t gives:

∂F ε

∂[A]ε
=

1

µo

[S]ε[A]ε (11)

where the general term of the matrix [S]ε is:

Sε
ij=

xo

4

b− a

(c′ − c)(f ′ − f)
aoiaoj

+
xo

2

∞
∑

n=1

λn

[eλn(c′−c) − eλn(c−c′)]

·
1

[eλn(f ′−f) − eλn(f−f ′)]
[(eλn(b−c) − eλn(c−b))

·(eλn(b−f) + eλn(f−b))− (eλn(a−c) − eλn(c−a))

·(eλn(a−f) + eλn(f−a))](anianj + bnibnj). (12)

where

f =

{

b and f ′ = a if i ∈ {1, 2, . . . , s}
a and f ′ = b if i ∈ {s+ 1, . . . , t}
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Fig. 3. Simple linear electrical machine model.

III. Coupling Scheme

The implementation of the CAGE into the standard fi-
nite element program is carried out in the same way as for
the AGE for annular air-gaps. The energy-related func-
tional is broken down into F e and F ε and is then minimized
with respect to A:

∂F

∂[A]
=

P
∑

e=1

∂F e

∂[A]e
+

∂F ε

∂[A]ε
(13)

In order to reduce the time taken to compute the CAGE
terms at different rotor positions, the scheme proposed in
[3] was implemented. Close inspection of Eq. (12) and
its counterpart for the annular AGE [1] reveals that this
scheme can be directly applied to the CAGE with very lit-
tle modification. In order to further reduce the CPU time
taken, it was possible to utilize a negative periodic model,
thus reducing the number of unknowns to be solved for
by a factor of two approximately. The modification to the
CAGE for negative periodic boundary conditions was done
in the same manner proposed in [3], which proves that the
first term in Eq. (12) disappears, and the second term is
doubled.

IV. Validation by Comparison

In order to validate the CAGE, the simplified linear prob-
lem shown in Fig. 3 was modeled. Firstly the air-gap was
discretized using two layers (120 nodes per layer) of clas-
sical first-order triangular elements, and the resulting FE
model solved. Then, the CAGE was substituted in place
of the discretized air-gap, leaving the rest of the FE mesh
unchanged, and solved. Homogeneous Dirichlet conditions
were assigned to the top and bottom boundaries, whilst
positive periodicity conditions were assigned to the left and
right boundaries.
Slots 1 - 6 were excited with balanced three-phase cur-

rents at an instant in time, and the air-gap flux density
distribution obtained by both methods is plotted in Fig.
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Fig. 4. Comparison of calculated air-gap flux density by using clas-
sical FE and C.A.G.E.

4. It is evident that the result obtained using the CAGE
agrees very well with that obtained using a discretized air-
gap.

Further examination and verification has also been per-
formed by comparing the respective magnetic stored en-
ergies in various parts of the model obtained from both
methods, as shown in Table 1. It is evident that the re-
sults are in very good agreement. The worst discrepancy
is about 0.5%.

V. Application

The 2D FE modeling of an iron-less stator AFPM ma-
chine [4] (illustrated in Fig. 5) is usually carried out by
introducing a radial cutting plane, which is then developed

TABLE I

COMPARISON OF THE CALCULATED MAGNETIC STORED

ENERGY IN DIFFERENT SUB-REGIONS OF THE MODEL

Regions C.A.G.E. (µJ) Classical FE (µJ) Diff%

Slot1 (Cu) 0.519085776 0.519129716 0.01%
(air) 0.692833408 0.695610829 0.40%

Slot2 (Cu) 2.07633383 2.07650904 0.01%
(air) 2.69936816 2.69670033 0.09%

Slot3 (Cu) 0.519085782 0.519129719 0.01%
(air) 0.692830925 0.699608371 0.09%

Slot4 (Cu) 0.519085777 0.519129716 0.01%
(air) 0.692833425 0.699610829 0.09%

Slot5 (Cu) 2.07633377 2.07650904 0.01%
(air) 2.69936826 2.69670033 0.09%

Slot6 (Cu) 0.519085774 0.519129719 0.01%
(air) 0.692830919 0.695608317 0.40%

Stator iron 0.242891804 0.242665537 0.14%
Rotor iron 0.025792278 0.0254261082 0.14%

Air-gap 35.8157674 35.9925716 0.49%
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Fig. 5. Exploded view of an AFPM machine, 1 – rotor discs, 2 –
stator winding, 3 – permanent magnets, 4 – epoxy core, 5 – radial
channels, 6 – air-inlet holes.
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Fig. 6. Time-step FE model of an iron-less stator AFPM machine

into a 2D flat model. Figure 6(a) shows an FE mesh for
such a model, which spans one pole of the AFPM machine.
The mesh consists of 622 elements and 447 nodes (of which
138 nodes lie on the boundaries of the CAGE ). The air-gap
region was modeled using the CAGE. The model was time-
stepped over a time interval of 16 ms (which corresponds to
the rotor moving by one pole-pair), using a time-step of 0.2
ms. This required 80 FE solutions. Figure 6(b) shows the
flux plot of the AFPM machine at a certain position. At
every rotor position, the total phase flux linkages were de-
termined from the FE field solution, from which the phase
EMF e(t) could be found as:

e(t) =
dλ

dt
=

λ(θ2)− λ(θ1)

t2 − t1
(14)

The total CPU time for this simulation was 107 seconds
on a 333 MHz PC running the Redhat Linux operating
system. The calculated EMF induced in the stator phase
winding at a shaft speed 970 rpm is compared with mea-
surement in Fig. 7. It is seen that the correlation between
calculated and measured EMF is very good.

VI. Conclusion

This paper has reported the development of a 2D CAGE,
and validated it by comparison with the standard FE
method. It has also shown that the CAGE is still a vi-
able method for time-stepped FE modeling of electrical
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Fig. 7. Phase EMF as a function of time at 970 rpm

machines, and the method has been successfully applied
to an AFPM machine. Measured and simulated results
of the AFPM machine open-circuit EMF when driven at
fixed speed were found to be in very good agreement. The
CAGE formulation derived here is applicable to most linear
machines and some other special machines such as rotating
disc machines.
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