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Analysis and Performance of Axial Flux
Permanent-Magnet Machine With Air-Cored

Nonoverlapping Concentrated Stator Windings
Maarten J. Kamper, Member, IEEE, Rong-Jie Wang, and Francois G. Rossouw

Abstract—In this paper, the performance of air-cored (ironless)
stator axial flux permanent magnet machines with different types
of concentrated-coil nonoverlapping windings is evaluated. The
evaluation is based on theoretical analysis and is confirmed by
finite-element analysis and measurements. It is shown that con-
centrated-coil winding machines can have a similar performance
as that of normal overlapping winding machines using less copper.

Index Terms—Air cored, axial flux, concentrated winding,
permanent magnet (PM).

NOMENCLATURE

a Number of parallel circuits.
Bp Peak air-gap flux density (in teslas).
e, E Induced voltage (in volts).
h Axial thickness of stator coil/winding (in meters).
kp Pitch factor.
kd Distribution factor.
ke End-winding factor.
kf Fill factor for stator conductors.
km Winding mass factor.
kr Radius factor.
ks Stator factor.
kw Winding factor.
� Active length of stator coil/winding=ro−ri (in meters).
�e Total end-turn length of stator coil (in meters).
�g Gap length between magnets of disks (in meters).
N Number of coil turns.
n Number of coils in a coil phase group.
Pcu Total copper losses of stator winding (in watts).
p Number of poles.
Q Number of stator coils.
q Number of stator coils per phase = Q/3.
re Average radius of stator winding = (ri + ro)/2

(in meters).
ri Inner radius of stator winding (in meters).
ro Outer radius of stator winding (in meters).
Td Developed torque (in newton meters).
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w Width of coil side (in meters).
λ Flux linkage (in weber turns).
γcu Density of copper (in kilograms per cubic meter).
ρt Resistivity of copper at temperature t (in ohmmeters).
θm Defined coil pitch or coil span (in electrical radians).
θr Coil width angle at radius r (in electrical radians).
ω Electrical speed (in radians per second).

I. INTRODUCTION

THE USE of concentrated nonoverlapping coils in radial
flux permanent magnet (PM) electrical machines has cer-

tain advantages, among other things, 1) shorter overall axial
length of the machine due to shorter end-turn length and 2) re-
duced stator winding cost due to less number of coils and simple
winding structure. A drawback, in general, of concentrated-coil
machines is the lower output torque due to a low winding factor.
Recent studies, however, show that concentrated-coil PM ma-
chines with high pole numbers can have high winding factors
and good output torque [1]–[4]. These studies focused on radial
flux PM machines with iron-cored stators in the 5–150-Nm
torque range. The characterization of an axial flux PM (AFPM)
generator with an iron-cored concentrated winding is described
in [5]. A research work on air-cored (ironless) concentrated-coil
AFPM machines is reported in [6] and [7], but with no detailed
analysis and comparison. Concentrated-coil AFPM machines
with air-cored stators do not have the problem of cogging
torque and putting the coils into iron slots as is the case with
iron-cored stator machines. Hence, there is more freedom in
the layout of the winding. Furthermore, concentrated-coil iron-
cored PM machines are known for their additional core losses
in the magnets and rotor iron yoke due to flux pulsations.
In concentrated-coil air-cored AFPM machines, this is almost
completely absent due to the low armature reaction effect.
There are, thus, no disadvantages in using concentrated coils
in air-cored stator AFPM machines, except for the remaining
question on the torque performance when using these windings.

In this paper, the torque performance of concentrated-coil
AFPM machines with air-cored stators is compared with the
torque performance of those AFPM machines that use normal
overlapping stator coil windings. The performance comparison
is done by deriving analytical equations for the torque per
given copper losses of the AFPM machines with different stator
windings. As there are no iron losses in these machines and the
eddy-current losses in the stator winding can be minimized by



Fig. 1. Cross section of AFPM machine.

Fig. 2. Layout of normal overlapping stator winding.

using proper stator conductors [8]–[10], comparing the torque
per copper losses of these machines is close to comparing the
efficiency of the machines.

In Fig. 1, a drawing is shown of a typical AFPM machine
with an air-cored stator. The stator shown is that of a normal
overlapping stator winding with large end-winding overhang.
Some dimensions are also shown.

II. THEORETICAL ANALYSIS

In this section, analytical equations of the torque are derived
for three-phase AFPM machines with three different stator
windings, namely, the normal overlapping stator winding and
two different types of concentrated-coil stator windings. Note
that, in this analysis and in the performance comparison, only
fundamental components of voltage and current are considered.

A. Normal Overlapping Stator Winding

The layout and dimensions of a normal three-phase overlap-
ping air-cored stator winding are shown in Fig. 2. Only one
coil per pole pair per phase is used in these types of windings;
there is, in this case, no need for a distributed winding as a coil
side is already distributed over one-third of a pole pitch, and
furthermore, the axial air-gap flux density in these machines is

Fig. 3. Single-turn coil in sinusoidal field.

quite sinusoidal [7], [9]. From Fig. 3, assuming a sinusoidal
axial flux density in the air gap, a coil pitch of θm = π, and the
coil at position α with respect to the flux density wave, the flux
linkage of a turn element of radial length dr at radius r can be
determined by

λ =

α+π−Δ∫
α+Δ

Bp sin θrdθ
2
p
dr (1)

with −θr/2 < Δ < +θr/2. Executing the integral of (1) with
α = ωt results in the following for the element flux linkage:

λ =
[
4
p
Bprdr cos(Δ)

]
cos(ωt). (2)

The element voltage eelm = −dλ/dt is then given by

eelm =
[
4
p
ωBprdr cos(Δ)

]
sin(ωt). (3)

Note that all the element voltages of (3) at the different Δ’s are
in phase as their magnetic axis are the same. From (3), the layer
voltage, assuming a continuous layer with N conductors, can
be determined by

elayer =
4
p
ωBprdrNkp sin(ωt) (4)

with kp given by

kp =
1
θr

+θr
2∫

−θr
2

sin
(π

2
− Δ

)
dΔ

=
2 sin(θr/2)

θr
. (5)

The coil voltage can be determined from (4) in a simple way
by dividing the active length of the winding in a number of
slices u, each with a length drj = �/u at an average radius rj as
follows:

ecoil =
4
p
ωBpN

⎡
⎣ u∑

j=1

rj
�

u

2 sin(θrj/2)
θrj

⎤
⎦ sin(ωt). (6)



However, it was found that the term in brackets in (6) can be
replaced with high accuracy by the term re�kp, with kp of (5)
then defined as

kp =
2 sin(θre/2)

θre
. (7)

The peak value of the sinusoidal phase voltage Ep, therefore,
can be written from (6) as

Ep =
q

a

4
p
ωBpNre�kp. (8)

In the comparative study of the different windings, it is
assumed that the phase current is in phase with the induced
phase voltage. The developed torque of the machine, therefore,
can be expressed from the developed power as

Td =
p

2ω
Pd =

3p

4ω
EpIp (9)

where Ip (i.e., the peak value of the sinusoidal phase current)
can be expressed in terms of copper losses as

Ip =

√
2Pcu

3Rph
(10)

and Rph (i.e., the phase resistance) in turn as

Rph =
N2qρt(2� + �e)

a2kfhw
. (11)

The coil side width w can be expressed approximately as

w = 2reθre/p. (12)

Substituting (8), (10)–(12) in (9) leads to the following
equation for the developed torque:

Td = kskekrC1 (13)

where ks is a stator factor given by

ks = kp

√
θreq/p (14)

ke is an end-winding factor given by

ke = (2 + δ)−
1
2 , with δ = �e/� (15)

kr is a radius factor given by

kr =
√

(1 + σr)3(1 − σr), with σr = ri/ro (16)

and C1 is a machine constant at given copper losses given by

C1 = r2
oBp

√
1.5Pcukfh/ρt. (17)

For normal overlapping air-cored windings, Q = 3p/2, so
that q/p = 1/2 in (14). Furthermore, the inner radius where the
coils are touching can be taken approximately as ri − �g . At this

TABLE I
STATOR AND END-WINDING FACTORS OF NORMAL OVERLAP WINDINGS

inner radius, the coil side width angle is π/3 electrical (note that
the coil side width will always be a maximum to maximize ks

and the torque). As the coil side width w of (12) is a constant, it
thus implies that (ri − �g)π/3 = reθre. Hence, θre in (14) can
be calculated by

θre =
(

ri − �g

re

)
π

3
=

2π

3

(
σr − ξ

1 + σr

)
, with ξ = �g/ro.

(18)

An approximate formula for the average total end-turn length
of practical overlapping coils is found to be

�e = 4πre/p + 4�g (19)

so that δ in (15) can be expressed as

δ =
2π(1 + σr)/p + 4ξ

1 − σr
. (20)

Applying (12), the total mass of the copper of the stator
winding is calculated by

Mcu = km(2 + δ)C2 (21)

where km is a winding mass factor given by

km =
(
1 − σ2

r

)
θreq/p (22)

and C2 is a machine constant given by

C2 = 3r2
okfhγcu. (23)

From (13) and (21), it is clear that the torque and mass are
expressed as functions of σr and ξ. The variable ξ depends on
the outer diameter of the machine; extreme values for ξ are
0.01 < ξ < 0.1. In the analysis, we used ξ as a parameter with
typical values assigned to it, namely, ξ = 0.03 and ξ = 0.07.
The ratio σr is varied in the analysis to investigate the change
in torque and mass.

Some values for ks and ke are given in Table I with ξ as a
parameter and σr = 0.6, and thus, kr = 1.28 from (16); note
that the latter values are typical values for overlap windings. As
expected from the aforementioned equations, ks is independent
of the number of poles, whereas ke and the overall winding
factor and, hence, the torque of the machine improve with the
number of poles. The effect of ξ on the overall winding factor
is evident.



Fig. 4. Layout of concentrated nonoverlapping coil stator winding (type I).

B. Concentrated-Coil Stator Winding (Type I)

The layout and dimensions of a concentrated nonoverlapping
air-cored stator winding are shown in Fig. 4. Only one coil in a
phase band (n = 1) is shown in this case, but more coils of the
same phase (n > 1) can be put side by side to form a coil phase
group; thus, we have to look at the general case.

The procedure for the derivation of a torque equation for
concentrated-coil windings is the same as for normal overlap-
ping windings, except that θm, as shown in Fig. 4, is not a
constant anymore but a variable that depends on the number
of poles and number of stator coils as follows:

θm = πp/Q. (24)

Let 0 ≤ Δ ≤ θr in this case, and following the same proce-
dure with the same approximations as in Section II-A, a similar
equation for the peak value of the phase voltage as in (8) can be
determined as

Epc =
q

a

4
p
ωBpNre�kp(I)kd(I) (25)

where the pitch factor kp(I) in this case is

kp(I) =
sin [0.5θm(1 − κ)] sin(0.5κθm)

0.5κθm
, with κ =

θre

θm
(26)

and kd(I) is a distribution factor that takes into account the
effect on the induced phase voltage when two or more coils
are connected in series in a coil phase group (n > 1)

kd(I) =
sin [0.5n(θm − π)]
n sin [0.5(θm − π)]

. (27)

Note that (27) gives the distribution factor of those coil phase
groups of which the n coils are side by side together, and not of
unevenly distributed coils in a phase group.

The aforementioned analysis is actually more complex than
in (25)–(27) because 1) the actual average length of the active
part of the winding is slightly larger than � and 2) the active
part is slightly skewed with the radial flux distribution as can
be seen from Fig. 4. These effects, however, become negligible
when the pole number is high.

Following the same procedure for the developed torque
as in (13), the following torque equation is obtained for
concentrated-coil winding machines:

Tdc = ksckeckrC1. (28)

In (28), the stator factor ksc is given by

ksc = kwc

√
κπ/3, with kwc = kp(I)kd(I) (29)

where kwc is the winding factor equivalent to the general
winding factor of electrical machines. κ in (29) is not a constant
but must be κ ≤ κ(max), where κ(max) is shown in Fig. 4 as

κ(max) =
θre(max)

θm
=

ri

2re
=

σr

1 + σr
. (30)

The end-winding factor kec in (28) is given by

kec = (2 + δc)−
1
2 , with δc = �ec/� (31)

and �ec is the average total end-turn length of a concentrated
coil. The accurate calculation of �ec [and �e in (19)] is very
important as it largely affects the comparison results; a formula
to calculate �ec for practical concentrated coils is found to be

�ec = 2θm(ro + ri)(1 − 0.6κ)/p. (32)

From (31) and (32), δc can thus be expressed as

δc =
2θm

p

(
1 + σr

1 − σr

)
(1 − 0.6κ). (33)

As in (21), the total mass of the copper of the concentrated-
coil winding is calculated by

Mcu(c) = km(2 + δc)C2. (34)

Various layouts exist for concentrated-coil windings.
The procedure to determine valid layouts for three-phase
concentrated-coil windings is as follows:

1) Select the number of poles divisible by two.
2) Identify those i’s, where i is a positive integer that meet

the following:

36 ·
[ p

6i
− TRUNC

( p

6i

)]
= k, k = 6, 12, 24, or 30.

3) For n = 1, 2, . . . (i.e., the number of phase coils side by
side forming a coil phase group), calculate the possible
number of stator coils as Q = 3ni.

It is interesting to investigate the stator winding factors kwc,
ksc, and kec as functions of κ. As an example, we choose a
32-pole AFPM machine with two possible stator windings,
namely, with Q = 24 (n = 1) and Q = 30 (n = 5) and, fur-
thermore, with σr = 0.6. The results of the calculations are
shown in Figs. 5 and 6. An interesting result is that the winding
factor kwc of the p = 32 Q = 24 stator winding can be higher
than that of the p = 32 Q = 32 winding. More important,



Fig. 5. Stator winding factors of p = 32 Q = 24 n = 1 AFPM machine
(σr = 0.6) (type I).

Fig. 6. Stator winding factors of p = 32 Q = 30 n = 5 AFPM machine
(σr = 0.6) (type I).

however, is the stator factor ksc that directly affects the torque
of the AFPM machine according to (28); the highest torque is
obtained with κ = κ(max) = 0.375 from (30). Note importantly
that the highest torque is not obtained where the general electri-
cal machine winding factor kwc is the highest. The end-winding
factor kec is shown to be hardly affected by κ.

To choose the layout with the highest output torque, it is best
to select the layout with the highest factor ksckec. In Table II,
the best options for concentrated-coil windings are given for
a different number of poles. In each case, κ was optimized to
maximize ksckec, keeping κ ≤ κ(max); however, it was found
that, in all the cases, κ(optimum) ≈ κ(max).

From these results, it is clear that the best options are those
windings where the number of poles are divisible by four and
n = 1; this results in winding layouts with θm = 4π/3 (240◦

electrical), a significant result that makes the design of AFPM
machines with concentrated-coil windings very simple. Note
that this finding still holds when other more complex unevenly
distributed winding layouts are also considered. Furthermore,
from the results in Table II, it can be seen that the end-winding
factor kec improves with Q, as expected, and ksckec improves
with pole number; note that ksc is independent of pole number
for the best winding options.

TABLE II
STATOR WINDING FACTORS OF CONCENTRATED-COIL (TYPE I) WINDINGS

Fig. 7. Layout of phase-group concentrated-coil stator winding (n = 3).

C. Phase-Group Concentrated-Coil Stator Windings

Phase-group concentrated-coil stator windings are defined as
those windings where n = q = Q/3; this implies that all the
coils of a coil phase group are grouped together in space on one-
third of the circumference of the machine as shown in Fig. 7.
Examples of these stator windings with fairly good winding
factors are given in Table II, e.g., {p = 16, Q = 15}, {p = 22,
Q = 21}, and {p = 28, Q = 27}. Note that, with these air-
cored phase-group windings, there is no disadvantage of un-
balanced magnetic pull or an increase in magnetic noise, as is
the case with iron-cored concentrated-coil stators [4].



TABLE III
STATOR WINDING FACTORS OF PHASE-GROUP

CONCENTRATED WINDINGS

Referring to Fig. 7, the highest winding factor for phase-
group concentrated-coil stator windings for any pole number
can be obtained by using the following θm in (26), (27),
and (33):

1) For pole numbers divisible by three (p = 6, 12, 18, . . .)

θx = 2π/3 ± 1/p Q = p − 3 n = Q/3

θm = kθ

(
3p

Q

)
(π − θx), for θx > 2π/3

θm = kθ

(
3p

2Q

)
θx, for θx < 2π/3.

2) For pole numbers not divisible by three (e.g., p =
14, 16, 20, . . .)

Q = 3n = 3 · ROUND(p/3 − 0.5)

θm = kθ
πp

Q
θx = 2π/3

with kθ as a real value (typical: 0.9 ≤ kθ ≤ 1) to be optimized
to maximize the winding factor; note that θx is a mechanical
angle.

For the calculation of the winding factors, the torque and the
mass of copper for phase-group windings, the same equations
as in Section II-B, are used. The results of the highest winding
factors for phase-group windings are given in Table III; note
that, in each case, κ was optimized to maximize ksckec, and
in each case, κ ≤ κ(max) according to (30). It can be seen
that machines with pole numbers not divisible by three give
slightly better winding factor values; these values are also
slightly higher than the values given in Table II as kθ < 1 in
this case.

D. Concentrated-Coil Winding (Type II)

A second-type concentrated-coil winding shown in Fig. 8
was investigated; the difference with the first type (Fig. 4) is
that the coils are touching each other only at the inner radius.

It is clear that this layout will lead to less flux linkage, but the
advantage is that the end-turn length is shorter. The derivation

Fig. 8. Layout of concentrated-coil (type II) stator winding.

of the stator factor ksc(II) is the same as in (26), (27), and (29),
however, with a different result, namely,

ksc(II) = kwc(II)

√
θreq/p, with kwc(II) = kp(II)kd(II)

(35)

with the pitch factor given by

kp(II) =
sin(θm/2) sin(θre/2)

θre/2
(36)

and the distribution factor by

kd(II) =
sin [0.5n(θi − π)]
n sin [0.5(θi − π)]

(37)

where θi = πp/Q and θm is given by

θm = θi − 0.5θre(1 + 1/σr). (38)

The equation for the average total end-turn length of the type II
concentrated-coil winding is

�ec(II) = 2(ro + ri)[θm + 0.4θre]/p (39)

so that δc of (33) can be expressed for the type II winding as

δc(II) =
2
p

(
1 + σr

1 − σr

)
(θm + 0.4θre). (40)

θre must be optimized to maximize ksc(II) of (35), however,
with the restriction that

θre ≤ θre(max) =
(

σr

1 + σr

)
θi. (41)

For the calculation of the torque and the mass of copper using
this type of winding, (28) and (34) of Section II-B are used.
Some results of the winding factors for the type II concentrated
winding are given in Table IV. As with the type I concentrated
winding, the highest values for the winding factors are obtained
for pole numbers divisible by four and n = 1.



TABLE IV
STATOR WINDING FACTORS OF CONCENTRATED-COIL TYPE II WINDING

TABLE V
WINDING DATA AND TORQUE PERFORMANCE COMPARISON

E. Torque and Copper Mass Comparison

The comparison study is done on a per unit basis. It is
therefore not necessary to calculate the machine constants C1

and C2 of (17) and (23), but only the overall winding factor
kskekr and mass factor km(2 + δ). Table V summarizes the
results of Tables I–IV for windings with pole numbers p = 16
and p = 28; windings with these pole numbers have the best
winding factors for all three types of concentrated windings.
The comparison in Table V is with σr = 0.6, but Figs. 9 and
10 show the effect of the σr ratio on the torque generated by
the different windings. Note that, in Table V and Figs. 9 and
10, the torque (actually kskekr) of the p = 28 AFPM machine
with the type I concentrated-coil winding (Fig. 4) is taken as
the base value for the per unit torque calculations.

From Table V, it can be seen that the end-winding factor
plays an important role in the torque performance. Table V and
Figs. 9 and 10 show also that the end-winding parameter ξ
(between ξ = 0.03 and ξ = 0.07) has a substantial effect
(8%–9%) on the developed torque of the overlapping winding;
note that ξ = 0.07 is more typical than ξ = 0.03. From the
comparison results, it is clear that the type I concentrated-
coil winding is the best of the three types of nonoverlapping
windings considered; the torque performance of this wind-
ing compares also favorably with that of the overlapping
winding.

Further observations are the following: 1) the optimum σr

values for the windings are different and 2) the performance of
the nonoverlapping concentrated windings with respect to the
overlapping winding improves with pole number as δc reduces;
nonoverlapping concentrated windings are, thus, best suited for
high-pole-number AFPM machines.

Fig. 9. Per-unit torque versus σr for different stator windings of p = 16
AFPM machine.

Fig. 10. Per-unit torque versus σr for different stator windings of p = 28
AFPM machine.

In Figs. 11 and 12, the effect of the σr ratio on the per unit
mass of the copper of the different windings is shown; note
that at one per unit torque, the mass of the copper [actually
km(2 + δ)] of the p = 28 type I concentrated-coil winding is
taken as the base value for the per unit mass calculations.
The low copper mass and good torque per copper mass of
specifically the concentrated type II winding are noteworthy
from Figs. 9–12.

It is also clear that higher pole number machines use less
copper than low-pole-number machines.

Finally, it is interesting from Figs. 11 and 12 that the copper
mass and thus copper cost increase with an increase in σr

(except at high σr ratios); this is due to an increase in coil width
as more space become available for coils at the inner radius. In
contrast, however, magnet mass and cost vary with (1 − σ2

r),
so that magnet cost decreases with an increase in σr. Magnet
mass and cost, therefore, must also be considered in a complete
comparison.



Fig. 11. Per unit mass of copper versus σr for different stator windings of
p = 16 AFPM machine.

Fig. 12. Per unit mass of copper versus σr for different stator windings of
p = 28 AFPM machine.

III. NUMERIC MODELING AND MEASUREMENTS

To evaluate the performance capability of the AFPM ma-
chine with different winding topologies, three air-cored AFPM
stators, with normal overlapping type I concentrated-coil and
phase-group windings, have been designed and fabricated as
shown in Fig. 13. These stators have been designed for the
same PM rotor disks. The complete design data of the AFPM
machines are given in Table VI.

Fig. 14 shows 2-D finite-element (FE) models of the
normal three-phase overlapping winding and two types of
concentrated-coil AFPM machines. Owing to the axial symme-
try, it is only necessary to model half of the machine for all three
types of AFPM machines, i.e., one rotor disk and half a stator,
by applying Neumann condition on the top boundary.

For a normal overlapping winding AFPM machine
[Fig. 14(a)], it is possible to model just one pole pitch of
the machine by applying negative periodical conditions on the

Fig. 13. Air-cored AFPM machine stators with (a) normal overlapping wind-
ing, (b) concentrated winding, (c) phase-group winding, and (d) the testing
setup of the AFPM machine.

TABLE VI
DESIGN DATA OF AFPM MACHINES WITH

DIFFERENT WINDING TOPOLOGIES

left and right boundaries. However, for type I concentrated
winding AFPM machines [Fig. 14(b)], it is necessary to model
two pole pairs of the machine by using positive periodical
conditions. For the phase-group winding AFPM machine
[Fig. 14(c)], it is inevitable to model the complete machine as
there is no symmetry in the coil groups.

A. Measured Results

The small (1 kW) AFPM machine shown in Fig. 13(d) was
tested as a generator feeding a balanced three-phase resistive
load. An ac drive was used as prime mover and a torque
transducer to measure the shaft torque as shown in Fig. 13(d).



Fig. 14. 2-D FE models of air-cored AFPM generator with (a) normal overlapping, (b) concentrated winding, and (c) phase-group winding.

TABLE VII
COMPARISON OF CALCULATED AND MEASURED RESULTS

Fig. 15. Measured open circuit voltage waveform of AFPM machine with
(a) overlapping and (b) concentrated winding.

The machine was tested at the same copper loss of 120 W for
each type of stator winding used.

The machine data and calculated and measured results are
given in Table VII. The good agreement between the cal-
culations and measurements in the torque and copper-mass
comparisons of the three windings is evident. Fig. 15 shows
the measured induced open circuit voltage of the normal over-
lap and the type I concentrated windings. It is clear that an

improved sinusoidal voltage waveform is obtained with the
concentrated winding.

IV. CONCLUSION

The analysis and measured results show that AFPM ma-
chines with air-cored nonoverlap concentrated-coil windings
can have similar and, in some cases, better torque performance
than with normal overlap windings; also, the higher the pole
number, the more competitive the concentrated winding be-
comes. From the derived winding factors, the best pole–coil
combinations for the different concentrated windings are iden-
tified. A significant result for concentrated windings with one
coil per phase group is that a coil span of 240◦ electrical
and pole numbers divisible by four can be used throughout.
It is furthermore shown that the mass of copper used is less
with concentrated windings—the test machine, for example,
uses almost 15% less copper with the concentrated winding
than with the overlapping winding. The concentrated winding
also shows the generation of a much more sinusoidal induced
voltage waveform than the overlap winding.
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