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IMPLEMENTATION OF A MOVING BAND SOLVER FOR FINITE
ELEMENT ANALYSIS OF ELECTRICAL MACHINES.
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Abstract: The simulation of magnetically geared electrical machines using the finite element method
is an especially demanding task when movement has to be considered. Several methods that
facilitate movement exist and the most prominent ones are described in this paper. Based on the
characteristics of these methods, the moving band is selected as the most appropriate for the simulation
of magnetically geared machines. This method is implemented in an in-house finite element package
and its performance is evaluated using two case studies. The accuracy as well as the computational
efficiency of the moving band technique is compared to that of the air-gap element. For magnetically
geared machines, the moving band is the preferred choice because of its low computational cost and
acceptable accuracy.
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1. INTRODUCTION

Magnetically geared machines (MGMs) are a new class
of electrical machine that integrates a conventional
permanent magnet machine with a concentric magnetic
gear. These machines are worth considering because
of the exceptionally high torque density that they offer.
Analyzing these machines using the finite element method
is very demanding for two reasons: Firstly, the lack of
periodicity often necessitates modeling of the full machine.
Secondly, the machines have multiple air-gaps (typically
two or three) which increase the problem complexity when
movement has to be considered. An example of such a
magnetically geared machine with an inner stator is shown
in Figure 1.

In this paper, several different methods that facilitate
movement in finite element meshes are briefly reviewed
considering the requirements for simulating magnetically
geared permanent magnet machines. Two of these
methods, implemented in an in-house finite element code,
are evaluated using two case studies which highlight the
relative merits of each method.

2. MOVEMENT FACILITATING TECHNIQUES

The main methods used to facilitate movement in finite
element analysis of electrical machines are the air-gap
element (AGE), Lagrange multiplier method (LMM),
mortar element method (MEM) and the moving band
(MB). In this section, these methods will be reviewed
briefly.

2.1 Air-gap element

The air-gap element [1] is a technique whereby the field
in the entire air-gap region is calculated analytically using
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Figure 1: An example of a magnetically geared permanent
magnet machine with an inner stator.

a Fourier series expansion of the vector potential. The
field representation must satisfy the boundary conditions
derived from the adjoining meshed regions. The vector
potential in the air-gap takes the form

A(x,y) = ∑
i

αi(x,y)ui (1)

where the αi fulfill the role of a shape function and
the ui are the nodal values of the vector potential on
the AGE boundary. Movement is accomplished by a
simple recalculation of the αi without any modification
to the mesh structure, resulting in simple and efficient
time-stepping [2].

Considering (1), it is clear that all the air-gap nodes
are connected and thus, this method results in a dense
block appearing in the final system matrix (see Figure 10)
which can have a drastic impact on the computational time
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required to obtain a solution. An advantages of the air-gap
element technique is that the results can be very accurate
because of the high order of the field representation in the
air-gap region. Also, the Fourier series representation of
the vector potential can be used directly to calculate the
torque as described in [3].

2.2 Lagrange multiplier method

The sliding surface technique was first proposed in [4].
The idea is to split the model into two separate domains,
Ωa and Ωb, and to ensure the continuity of the vector
potential across the domain boundaries, an additional
constraint

Iλ =
∫

Γ
λ(Aa −Ab)dΓ = 0 (2)

is added to the standard finite element formulation. The
solution to the coupled problem is obtained by minimizing

I(Aa,Ab,λ) = Ia + Ib + Iλ (3)

with respect to the vector potentials of the two domains,
Aa and Ab, and the Lagrange multipliers, λ. Ia and Ib are
standard energy functionals,

Ia =
1
2

∫

Ωa

1
µ

([
dAa

dx

]2

+

[
dAa

dy

]2
)

dΩa (4)

Ib =
1
2

∫

Ωb

1
µ

([
dAb

dx

]2

+

[
dAb

dy

]2
)

dΩb (5)

The method also has the advantage that the structure of
the mesh is maintained when moving, in other words, no
remeshing is required. On the other hand, the method
increases the system dimension by introducing an extra set
of variables, the Lagrange multipliers.

2.3 Mortar element method

The mortar element method and the Lagrange multiplier
method produce similar results [5], and can both be
considered sliding surface techniques. In contrast to the
LMM, the MEM deals with the interface between the two
domains by considering one as the master and the other
as the slave. The variables on the slave interface are
functions of the variables on the master interface and so
they can be eliminated. Thus, the methods differ in terms
of the characteristics of the system matrices they produce.
According to [5], the MEM produces a positive definite
matrix whereas the LMM does not. This means that
MEM systems can be solved by the Incomplete Choleski
Conjugate Gradient (ICCG) method but LMM systems
can not. On the other hand, MEM matrices have more
nonzero entries than LMM matrices. It is concluded that
the performance of MEM used together with ICCG quickly
overtakes that of LMM with Gaussian elimination as the
system dimension increases.

2.4 Moving band

This technique was first proposed in [6]. It has several
advantages over the other techniques mentioned thus far.
It employs no special elements or coupling techniques,
it does not generated any dense blocks in the system
matrix and it does not increase the system dimension.
For these reasons, the moving band technique should be
superior in terms of computational speed. However, there
are difficulties with this method as well: Remeshing the
air-gap region is inevitable and thus the numbering as well
as the amount of nodes in the mesh does not stay constant.
For this reason, the conditioning of the system matrix is
not maintained and preconditioning routines must be rerun
when the mesh changes. Also, because the elements in
the air-gap are geometrically distorted to accommodate
arbitrary movement, the results obtained using this method
often have an oscillating error component.

2.5 General considerations

It is noted that the importance of having a sparse system
matrix with a small profile depends on the method used
to solve the system equation. In this study, a direct
method (Lower-Upper factorisation) which is sensitive to
the profile was used. Conjugate gradient methods may
be less sensitive to the profile and could be considered in
future.

Based on the above considerations, the moving band
technique was selected as the most appropriate technique
for modeling MGMs.

3. IMPLEMENTATION

In this section, the implementation of the moving band
technique in an in-house Fortran finite element package
call SEMFEM will be described.

A flowchart describing the working of the moving band
solver is depicted in Figure 2. As shown in the figure, the
first part of the solver consists of a single process which
detects the number of air-gaps in the model and sets up the
master data structures. The second part of the algorithm
makes use of parallel processes where the number of time
steps to be solved is divided among the number of threads.
The parallelization is achieved using OpenMP [7]. Using
this procedure, a significant speed-up can be achieved on
multicore processors.

Two primary data structures are used in the solver. The first
one stores the general mesh information, the second stores
information on the moving bands. For every time-step, the
bands have to be shifted which results in distortion of the
elements and possibly reconnection of the air-gap nodes to
avoid badly shaped elements. In periodic models where the
full machine is not simulated, additional nodes also need to
be added in order to maintain correct boundary conditions.
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Figure 2: Flowchart of the moving band solver.

Once the bands have been correctly setup for a specific
time instant, the information is appended to the base mesh
to form a mesh specific to this time instant, complete with
elements in the air-gap regions. The next step is to apply
the appropriate boundary conditions to this mesh.

Because of the difference in the number of nodes and
their numbering, a new mapping of nodes to unknowns is
required for each time-step and similarly, profile reduction
is executed for each time-step. It is noted that with
the air-gap element technique previously implemented in
SEMFEM, profile reduction was only performed once
before proceeding to solving. However, the reduction
in solution time due to the improved conditioning of the
system matrix obtained with the moving band technique
far outweighs the cost of the additional profile reductions,
especially for multiple air-gaps with many nodes.

Prior to solving, the matrix coefficients related to the
elements in the air-gap must be recalculated. The
coefficients for the rest of the model are constant and
are calculated only once, before starting the time-stepping
procedure. The nonlinear problem is solved using the
Newton-Raphson method.

Finally, the post-processing calculations of the torque,
flux-linkage and copper loss are also performed in parallel.

4. VERIFICATION AND PERFORMANCE
EVALUATION

In order to evaluate the accuracy and performance of
the moving band solver, this section reports simulation
results for two machines. The first machine is an interior
permanent magnet (IPM) machine, shown in Figure 3. The
second is the magnetically geared machine introduced in
Figure 1. Both machines were simulated using air-gap
elements as well as moving bands with a coarser and a finer
mesh. The only difference between the air-gap element
and the moving band models lies in the modeling of the
air-gap regions. The meshes in the rest of the models
were exactly the same. However, the underlying torque
calculation method for the two movement methods also
differ. For the air-gap element, the maxwell stress tensor
method, as described in [3] is used. For the moving band
method, the Coulomb virtual work method [8, 9] is used.

4.1 Interior permanent magnet machine

A time-stepped simulation consisting of 200 static
solutions was performed for the IPM machine. Figure
4 shows a comparison of the torque calculated using the
two movement handling methods for a relatively coarse
mesh. It can be seen that the average torques are in
good agreement, however, the torque calculated using the
MB has a high frequency oscillation. This illustrates the
superior accuracy of the AGE in coarse meshes. Typically
when using the MB, the air-gap region would be meshed
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Figure 3: Single air-gap, periodic model of a synchronous PM
reluctance machine.
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Figure 4: IPM machine: Torque comparison with a coarse mesh.
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Figure 5: IPM machine: Voltage comparison with a coarse mesh.

0.0 0.2 0.4 0.6 0.8 1.0
Time [seconds]

75

80

85

90

95

100

105

To
rq

ue
[N

m
]

Moving band
Air-gap element

Figure 6: IPM machine: Torque comparison with a fine mesh.
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Figure 7: IPM machine: Voltage comparison with a fine mesh.

finer than when using the AGE in order to improve the
accuracy, with some added cost in computational time.
However, such refinements are not considered in this paper.
Figure 5 shows a comparison of the phase voltage for the
coarse mesh. The results are in very good agreement.

The results for a simulation with a finer mesh are shown
in Figures 6 and 7. Note that the calculated torques match
very closely in this case. Once again, there is almost no
difference in the calculated phase voltage.

4.2 Magnetically geared machine

The simulation of the MGM consisted of 50 time steps.
Figure 8 shows a comparison of the calculated torques
in each of the three air-gaps of the machine using the
two movement methods. These results are for a relatively
coarse mesh. Clearly, the results are in good agreement,
although the moving band method’s results for the outer
air-gap does have a small oscillation. The phase voltages,
shown in Figure 9, match very closely. Similar results have
been achieved with a finer mesh, the only difference being
a reduction in the torque ripple calculated using the MB.

4.3 Performance comparison

The simulations were run on an Intel i7 CPU with 4 cores
(8 virtual cores). Both methods exploit the multi-core
architecture to run calculations in parallel. The calculation
times for the different simulations are given in Table 1.
Note that in all cases the MB was significantly faster

Proceedings of the 22nd South African Universities Power Engineering Conference 2014

252



0.0 0.2 0.4 0.6 0.8 1.0
Time [seconds]

−20

0

20

40

60

80

100

To
rq

ue
[N

m
]

Moving band
Air-gap element

Figure 8: Torque comparison.
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Figure 9: Voltage comparison.

than the AGE, but for the MGM a vast improvement in
computational times is observed. The MB is roughly 20
times faster than the AGE for the MGM. Considering that
the accuracy of the torque calculation for the MGM was
also acceptable, the MB is definitely the preferred choice
for the simulation of MGMs.

In order to explain why the MB band performs so much
better than the AGE in the case of the MGM, Figure
10 illustrates the structure of the final system matrices
obtained using the AGE and the MB. The contribution of
the three air-gap elements are clearly present in the AGE
matrix in the form of the three dense blocks. The profile of
the AGE matrix is also higher than that of the MB matrix.
The MB matrix can be solved efficiently using the direct
method employed in SEMFEM.

Simulation case
Calculation times

[seconds]
AGE MB

IPM machine (2355 nodes) 19.7 9.4
IPM machine (7076 nodes) 108.5 68.9
MGM (9858 nodes) 971.8 37.4
MGM (28436 nodes) 7074 376.4

Table 1: Performance comparison of movement methods

(a) Air-gap element (b) Moving band

Figure 10: Matrices generated by FEM.

5. CONCLUSIONS

In this paper, the most prominent movement facilitating
methods used in finite element analysis of electrical
machines were briefly reviewed. The simulation of
magnetically geared machines is very demanding when
movement is considered. The difficulty is due to multiple
air-gaps and lack of periodicity in the models. Considering
these properties, the moving band method is a good
choice when a direct method of solving the final system
equation is employed. This is because it produces a highly
sparse system matrix with the lowest bandwidth of all the
methods considered. The method has been implemented
in an in-house finite element package and good agreement
with results obtained with air-gap elements have been
demonstrated. For an example magnetically geared
machine, the computational time when using the moving
band is roughly 20 times less than when using the air-gap
element. On the other hand, the superior accuracy of
the air-gap element when using relatively coarse meshes
have been demonstrated and it remains a valuable method,
especially when the model size can be reduced by
exploiting periodicity.

6. FUTURE WORK

Among the many techniques of solving the final system
equation, the ICCG method [10] is a widely used method.
The method has the advantage that it is not strongly
affected by the bandwidth of the system matrix [11]. For
this reason, the other methods considered in this paper may
show a significant improvement in performance if this type
of equation solver is used. These possibilities should be
further investigated.

The problem of noisy results due to the distortion of
the moving band elements can be avoided by using
higher-order elements in the moving band, as demonstrated
in [12]. If the accuracy of the first order implementation
proves to be insufficient in some cases, it is recommended
that higher-order hierarchic elements be used in the
moving band.

Proceedings of the 22nd South African Universities Power Engineering Conference 2014

253



ACKNOWLEDGEMENT

This work was supported in part by the National Research
Foundation (NRF), Eskom Tertiary Education Support
(TESP) and Stellenbosch University, all of South Africa.

REFERENCES

[1] A. Abdel-Razek, J. Coulomb, M. Feliachi, and
J. Sabonnadiere, “Conception of an air-gap element
for the dynamic analysis of the electromagnetic field
in electric machines,” IEEE Trans. Magn., vol. 18,
no. 2, pp. 655–659, March 1982.

[2] T. Flack and A. Volschenk, “Computational aspects
of time-stepping finite element analysis using an
air-gap element,” Proceedings of ICEM’94, Paris,
1994.

[3] A. Abdel-Razek, J. Coulomb, M. Feliachi, and
J. Sabonnadiere, “The calculation of electromagnetic
torque in saturated electric machines within com-
bined numerical and analytical solutions of the field
equations,” IEEE Trans. Magn., vol. 17, no. 6, pp.
3250–3252, November 1981.

[4] D. Rodger, H. Lai, and P. Leonard, “Coupled
elements for problems involving movement,” IEEE
Trans. Magn., vol. 26, no. 2, pp. 548–550, March
1990.

[5] O. Antunes, J. Bastos, N. Sadowski, A. Razek,
L. Santandrea, F. Bouillault, and F. Rapetti,
“Comparison between nonconforming movement
methods,” IEEE Transactions on Magnetics, vol. 42,
no. 4, pp. 599–602, April 2006.

[6] B. Davat, Z. Ren, and M. Lajoie-Mazenc, “The
movement in field modeling,” IEEE Transactions on
Magnetics, vol. 21, no. 6, pp. 2296–2298, November
1985.

[7] OpenMP Architecture Review Board, “OpenMP
application program interface version 3.1,”
2011. [Online]. Available: http://www.openmp.org
/mp-documents/OpenMP3.1.pdf

[8] J. Coulomb, “A methodology fot the determination
of global electromechanical quantities from a finite
element analysis and its application to the evaluation
of magnetic forces, torques and stiffness,” IEEE
Transactions on Magnetics, vol. 19, no. 6, pp.
2514–2519, 1983.

[9] J. Coulomb and G. Meunier, “Finite element im-
plementation of virtual work principle for magnetic
or electric force and torque computation,” IEEE
Transactions on Magnetics, vol. 20, no. 5, pp.
1894–1896, 1984.

[10] J. A. Meijerink and H. A. van der Vorst, “An
iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix,”
Mathematics of Computation, vol. 31, no. 137, pp.
148–162, 1977.

[11] C. Trowbridge and J. Sykulski, “Some key de-
velopments in computational electromagnetics and
their attribution,” IEEE Transactions on Magnetics,
vol. 42, no. 4, pp. 503–508, 2006.

[12] O. Antunes, J. Bastos, and N. Sadowski, “Using
high-order finite elements in problems with move-
ment,” IEEE Transactions on Magnetics, vol. 40,
no. 2, pp. 529–532, 2004.

Proceedings of the 22nd South African Universities Power Engineering Conference 2014

254


