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Traction Motor Optimization Using Mesh
Reshaping for Gradient Evaluation

Stiaan Gerber and Rong-Jie Wang

Abstract—Optimization of electrical machines is a challeng-
ing task that can be solved using either gradient based or non-
gradient based methods. While gradient based methods are
theoretically much more efficient, their performance is often
compromised in applications where finite element analyses are
used for performance evaluation. In this paper, a common
pitfall of gradient evaluation and a method for overcoming it is
discussed. A special gradient based optimization approach that
employs mesh reshaping for gradient analyses and standard
remeshing for other steps is proposed. The performance of
this optimization approach is evaluated in a representative case
study of a traction motor design optimization. The results clearly
highlight the benefits of the mesh reshaping technique.

Index Terms—Design optimization, finite element analysis,
gradient methods, mesh refinement, permanent magnet motors,
traction motors

I. INTRODUCTION

ELECTRICAL traction motors are widely employed in
various types of drive systems. With the increasing level

of electrification of transport systems, the amount of traction
motors being deployed will surely see significant growth.
Considering this trend, the design optimization of traction
motors is vitally important as ever more stringent constraints
are placed on the performance and cost of these motors.

Traction motor optimization is generally a more difficult
task in comparison with the optimization of motors designed
for a single operating point. These motors have to satisfy dif-
ferent constraints in various operating points, including start-
up, base speed and maximum speed. Furthermore, overload
and partial load conditions at various speeds may impose yet
more constraints on the design. Considering that the number
of variables that describe the geometry of traction motors
typically fall in the range of 10 - 20, the optimization task
may be challenging.

Several different optimization strategies may be formu-
lated, with differences in terms of the selection of variables,
operating points and analysis procedure [1]. Despite these
differences, a distinction can generally be made between
gradient based methods and non-gradient based (global)
methods.

The intricate cross-sectional geometries of traction motors
necessitate the use of numerical methods for accurate solution
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of the magnetic fields and subsequent performance analysis.
In this regard, the finite element method is ubiquitous.
However, due to the computational cost of finite element
analyses, it is important that optimization strategies that rely
on finite element analyses to evaluate the objective function
and constraints be efficient. In many scenarios, the use of
global optimization algorithms is not very practical because
of the computational cost of an analysis and the large number
of analyses required to find an optimal design. Gradient based
algorithms generally require far fewer function evaluations
to converge and therefore, they may be a better choice for
many problems, especially those where the objective and
constraints are relatively smooth functions. This includes
many problems in traction motor optimization.

Even though gradient based algorithms are theoretically
more efficient than global methods, in practice, gradient
based optimization using finite element analyses does not
always live up to its potential. One issue, that is the focus
of this paper, is the accuracy and stability of the gradient
calculations. Gradients have to be estimated numerically by
perturbation of the design variables. When small changes
are made to the geometry, the structure of the resulting
finite element mesh may change significantly. The change
in the structure of the mesh has an impact on the calculated
gradient.

It has been recognized that changing the structure of the
mesh can be detrimental to the performance of optimization
procedures, either for issues related to accuracy or simply
because generating new meshes takes a significant amount
of time [2]–[7]. In [2], a method is proposed whereby the
structure of the mesh can be maintained while accommo-
dating changes in the geometry with as little displacement
of nodes as possible. It was proposed that optimization can
be performed without changing the structure of the mesh at
all using this technique. Other mesh deformation techniques
have also been proposed and applied to 3-D problems, where
the cost of mesh generation can be especially high [5]–[7].

In this paper, a unique implementation of a gradient based
optimization procedure for traction motors will be described
and evaluated. In this implementation, meshes used for gra-
dient evaluation are generated using the technique proposed
in [2] (reshaping), but meshes for other function evaluations
are generated anew (remeshing). In this way, the accuracy of
gradients and the quality of meshes is maintained over large
search spaces, allowing powerful and flexible optimization
procedures to be developed. Unlike some other works that
make use of mesh deformation [4]–[7], the primary goal



(a) Remeshing (b) Reshaping

Fig. 1. Remeshing vs reshaping of a base mesh. Base mesh in black,
modified mesh in red.

is not to avoid or reduce the cost of mesh generation, but
the improvement of the performance of the optimization
algorithm, for which accurate gradient information is vital.

II. MESHING PROCEDURE

In this section, an overview of the special meshing proce-
dure used during gradient evaluation is given. In this paper,
the method is referred to as mesh reshaping. The method was
first proposed in [2], where it is described in some detail.
Here, practical issues regarding the specific implementation
used in this work is discussed.

The method allows the structure of a mesh to be main-
tained while accommodating small variations in the geometry.
As an example, Fig. 1 shows a simple square mesh with
an inner square feature. Fig. 1a illustrates what can happen
when the size of the inner square is reduced and the mesh
is regenerated anew (standard remeshing). The original mesh
is shown in black and the modified mesh in red. Notice that
the structure of the modified mesh (red) is different from the
base mesh (black) since some elements have “flipped”. On
the other hand, Fig. 1b illustrates a modified mesh generated
using the reshaping method. The structure of the mesh
is maintained and nodes have been displaced a minimum
amount to accommodate the change in size of the inner
square.

The reshaping procedure can be considered to consist of
three steps: node classification, constrained node displace-
ment calculation and free node displacement calculation.

A. Node classification

In the first step, all nodes of the base mesh have to
be classified as either free nodes or constrained (fixed dis-
placement) nodes. All nodes that are directly related to the
geometry are constrained nodes. These nodes typically lie on
the boundaries of uniform regions. The best way to identify
these nodes will depend on the underlying mesh generator. In
this study, the input to the mesh generator is a planar straight-
line graph (PSLG), as shown in Fig. 2. The constrained nodes
can be identified by finding all the nodes in the base mesh
that lie on an input segment of the PSLG. The number of

Fig. 2. Planar straight-line graph from which constrained nodes are
identified.

constrained nodes may exceed the number of nodes in the
PSLG since some input segments may be subdivided by the
mesher.

B. Constrained node displacement calculation

Having identified the free and constrained nodes in the
base mesh, the next step is to determine the displacement
of the constrained nodes in the modified mesh. This is
achieved by comparing the PSLG of the base mesh to the
PSLG of the desired modified mesh. It is important to ensure
that the structures of the two PSLGs match precisely for
this technique to work effectively. If this is ensured, it is
straightforward to calculate the displacement between match-
ing nodes. The displacement of constrained nodes in the
mesh that do not appear in the PSLGs (those that have been
generated by subdivision of input segments) are determined
by interpolation of the displacements of the nodes that do
appear in the PSLGs.

C. Free node displacement calculation

In the final step, the displacements of all the free nodes,
df , are solved using Laplace’s equation [2], subject to the
boundary conditions on the constrained nodes, di:

∇2d = 0 (1)

di = pmod
i − pbase

i (2)
d = df ∪ di (3)

where

d =

[
dx
dy

]
and pi =

[
x
y

]
(4)

are vectors of displacements and nodal positions, respectively.
While it is noted in [2] that the above procedure described

in this section may fail for large displacements of the input
nodes, this is not a concern when using the procedure in
the proposed optimization strategy. Since mesh reshaping is
only applied for gradient evaluation and the displacement of
the input nodes is always small when the design variables
are perturbed by small values, the mesh reshaping procedure
works reliably without any additional stabilization proce-
dures. Furthermore, remeshing ensures that the quality of
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Fig. 3. Flow diagram of the optimization process where geometric and
operating point variables are optimized together in a single loop.

the mesh is maintained over a large design space. Using a
single base mesh and reshaping for an entire optimization
process may lead to poor quality meshes being generated
during optimization.

III. OPTIMIZATION STRATEGY

A gradient-based optimization strategy is considered
where the aforementioned mesh reshaping strategy is applied
during gradient evaluation. In this work, the SLSQP algo-
rithm [8] available in the Python SciPy package is used.

A. Problem formulation

For traction applications, it is important to consider the
performance of the machine in several operating points [9],
[10]. One approach to traction motor design is to conduct
a full drive cycle analysis for each candidate design. For
this type of analysis, flux maps are typically generated from
which the machine’s performance can be evaluated in many
operating points with relatively low computational cost. Us-
ing the flux maps, optimal dq-currents can be found for each
required torque-speed operating point. However, generating
the flux map is a computationally expensive process.

In this work, an alternative approach is used, as depicted
in Fig. 3. Instead of conducting a complete drive cycle
analysis, the focus falls on a number of critical operating
points. If a relatively low number of points can be con-
sidered, this strategy is efficient compared to approaches
that require flux maps. The considered operating points may
include peak overload conditions at low and high speed and
continuous operating points where the machine will operate
for a large percentage of time. Alternatively, the points may
be spread across the entire operating region, according to the
specific requirements of the application. For each considered

TABLE I
COSTS OF MATERIALS

Material Cost
Permanent magnet $50/kg
Lamination steel $2/kg
Copper $6.67/kg

operating point, a set of constraints is introduced in the
optimization problem to ensure satisfactory performance.
Typically, these constraints include the required torque and
limits on the voltage, current and losses. Other aspects such
as demagnetization may also be considered for each operating
point.

B. Design variables

As shown in Fig. 3, the optimization process consists of a
single loop where geometric and operating point variables are
optimized alongside each other. The operating point variables
consist of the dq-currents for each operating point. Thus, if
three operating points are considered, as in Fig. 3, a total of
six operating point variables are added to the set of design
variables.

During optimization, each design geometry is not neces-
sarily evaluated at its optimal operating point. However, a
successful optimization will ensure that both the geometry
and the operating variables converge to optimal values for
each operating point.

IV. TRACTION MOTOR CASE STUDY

In this section, a case study is presented to evaluate the
performance of optimization using standard remeshing and
the reshaping technique for gradient evaluation. An interior
permanent magnet (PM) machine with a V-shaped magnet
configuration is designed with the objective of minimizing the
active material cost. The active material cost was calculated
based on the values given in Table I.

A. Design variable selection

The motor topology considered in this case study is shown
in Fig. 4. The major geometric parameters that describe the
topology are illustrated in Figs. 5a and 5b. Some transforma-
tions are applied to these parameters to obtain the geometric
design variables defined in the optimization problem. This
is done in order to ensure that the search space can be
bounded properly and that all points within the search space
yield valid geometries. The most important design variables
are described here, with some simplifications to keep the
discussion brief.

For this case study, the outer diameter 2(Ro) was fixed at
250 mm. The stator inner radius, Ri, was obtained from the
ratio of the stator thickness to the total machine thickness,
Ro−Ri

Ro−ri . This ratio was chosen as a design variable. The
inner rotor radius, ri, was chosen as a design variable. The
expression, Hs

Hs+Hy
, was chosen as a design variable, from



Fig. 4. Interior PM topology considered in the case study.

(a) (b)

Fig. 5. Geometric parameters. a) Stator parameters. b) Rotor parameters.

which Hs and Hy was calculated. The stator slot width was
obtained from the ratio θs

θQ
. This ratio was also chosen as a

design variable.
For the rotor, the width of the gap between flux barriers,

Wsb, was chosen as a design variable. The angle of the
magnets, θm, was chosen as a design variable, although in
practice, this variable was normalized relative the minimum
and maximum feasible angles for a specific rotor size. An-
other parameter related to the aspect ratio of the magnets,
Wm

Hm
, was used as a design variable. The thickness of all

connecting bridges were fixed.
In addition, the stack length and the number of series

turns were chosen as design variables.

B. Specifications

The specifications for the motor are given in Table II.
As can be seen in the Table, three operating points have
been chosen to consider in the optimization. The position of
these operating points within the torque-speed envelope of
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Fig. 6. Location of operating points considered in optimization within the
torque-speed envelope of the machine.

TABLE II
TRACTION MOTOR SPECIFICATIONS

Geometry
Number of poles 8
Number of slots 48
Outer diameter 250 mm
Air-gap length 1 mm

Material characteristics
Winding fill factor 0.65
PM remanent flux density 1.184 T
PM recoil permeability 1.052
Lamination steel M400-50A

Inverter output limits
Line voltage 230 V
Phase current 500 A

Point 0: Peak overload (Low speed)
Torque 350 Nm
Speed 4000 rpm
Loss 10 kW

Point 1: Continuous (Base speed)
Torque 200 Nm
Speed 5000 rpm
Loss 4.2 kW

Point 2: Peak overload (Max speed)
Torque 100 Nm
Speed 12 000 rpm
Loss 10 kW

the machine is shown in Fig. 6. Notice also that there is a
large difference in the acceptable loss between the overload
operating points and the continuous operating point.

C. Optimization

A set of 80 random initial designs were generated within
the design space. Starting from each of these initial design
points, the machine was optimized using the two different
meshing strategies for gradient evaluation: remeshing and
reshaping. The objective was to minimize the active material
cost. Four constraints were applied to each operating point,
corresponding to limits on the torque, voltage, current and
the loss. The loss calculation only included DC conduction
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Fig. 7. Initial and optimal design torque distributions for each operating
point.

loss and core loss. This was done to reduce computational
costs for the purpose of this paper, but of course other loss
components could also be included in the analysis.

Thus, a total of 160 optimization problems were solved.
The optimizations were run on an Intel i7-3770K CPU @
3.5 GHz and completed in approximately 15 hours. Relatively
coarse meshes were employed to limit the computational
time. The average mesh size was roughly 1000 elements.

D. Results

Figs. 7 - 10 show the distributions of the torque, voltage,
current and loss for each operating point for both initial de-
signs and optimum designs. In these figures, the distributions
are shown using box plots. The whiskers (lower and upper
horizontal lines) show the 5th and 95th percentiles of the
data, while the lower and upper edges of the box correspond
to the first and third quartiles of the data. The horizontal line
inside the box represents the median of the data.

The data shown in these figures include the results from
both optimization strategies. As expected, the initial values
of the constrained functions are distributed over a wide
range and in many cases the constraints are violated. On the
other hand, the values of the constrained functions at the
optimum design points are tightly grouped at the constraint
boundaries. This is indicative of successful optimizations. In
Fig. 11, it can also be seen that the distribution of the cost
is more tightly grouped for the optimum designs compared
to the initial designs, although not as tightly grouped as the
constraints are. This indicates that all the optimizations did
not quite manage to find the best optimum point.

The performance of the remeshing and reshaping op-
timization strategies are compared in Figs. 12 and 13. In
Fig. 12, it can be seen that optimization using reshaping man-
aged to converge to an optimal solution using a significantly
lower amount of function evaluations on average compared
to the standard remeshing approach. Furthermore, Fig. 13
shows that optimization using reshaping managed to find
better optimum designs with lower cost.

In order to better understand why optimization using
reshaping showed improved performance, the advantage of
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Fig. 8. Initial and optimal design line voltage distributions for each
operating point.
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Fig. 9. Initial and optimal design phase current distributions for each
operating point.
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remeshing and reshaping optimization strategies.

the reshaping technique for gradient calculation is inves-
tigated further. Figs. 14 and 15 illustrate the gradient of
the maximum overload torque with respect to a subset of
the design variables, calculated at the best optimum design
point. The gradient is calculated as the change in the torque
divided by the change in the design variable for different
relative step sizes. A zero gradient means that the overload
torque is independent of a specific variable. In Fig. 14,
it can be seen that the gradient varies significantly as the

Remesh Reshape

120

140

160

180

200

220

240

T
ot

al
co

st
[U

S
D

]

Fig. 13. Objective function (total cost) at the optimum for remeshing and
reshaping optimization strategies.
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Fig. 14. Gradient of the maximum overload torque with respect to the
design variables, calculated using standard remeshing.
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Fig. 15. Gradient of the maximum overload torque with respect to the
design variables, calculated using mesh reshaping technique.

step size is changed, even changing sign in some cases. In
Fig. 15, the situation is greatly improved as the gradient
is virtually independent of the step size. This illustrates
the improved stability of the gradient calculation using the
reshaping technique and is the reason for the improvement
in the performance of the optimizations that use reshaping.

The smoothness of the objective function and two con-
straints are further evaluated in Fig. 16 along a specific
search direction, corresponding to the gradient of the ob-
jective function. The two considered constraints are the line
voltage in point 1 and the torque in point 2. The solid lines
were obtained using remeshing while the dotted lines were
generated by reshaping, using the point with a step size of
zero as a base mesh. Again, it is clear that the remeshing
strategy produces a significant amount of noise in the output
for fine step sizes, while the reshaping strategy eliminates
these errors. On the other hand, discrepancies between the
results from the remeshing and reshaping strategies for larger
steps sizes, as observed in Fig. 16a around a step size of 0.5,
are likely due to a degradation in the quality of the reshaped
mesh. This illustrates why it still better to employ remeshing
for larger step sizes.
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and T2) in the direction of the gradient of the objective.
Solid lines: Remeshing. Dotted lines: Reshaping.

V. CONCLUSION

Gradient evaluation is a common pitfall in the application
of gradient based optimization to traction motor design. In
this paper, it has been demonstrated that a special mesh
reshaping technique can lead to significant improvements in
the performance of gradient based optimization when applied
in the calculation of gradients. Standard remeshing can still
be used in other steps of the optimization algorithm. In this
way, the stability of the gradient calculation is improved
while mesh quality is maintained over a large design space.

Mesh reshaping techniques are not commonly available in
commercial electromagnetic finite element simulation pack-

ages. This paper makes a strong case for the inclusion of
such techniques.

While the focus of this paper falls on the electromagnetic
design of traction motors, the technique is just as applicable
to many other disciplines where gradient based optimization
using finite element analyses can be employed. Similar per-
formance gains may be expected. The technique may also be
extended to 3-D optimization processes.
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