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Evaluation of Movement Facilitating Techniques for
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Geared Electrical Machines
Stiaan Gerber and Rong-Jie Wang

Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa

The simulation of magnetically geared electrical machines using the finite element method is an especially demanding task when
movement has to be considered. Several methods that facilitate movement exist. In this paper, two of these methods, the macro air-gap
element (AGE) and the moving band (MB) are applied in a time-stepped static simulation of a magnetically geared machine (MGM).
The methods are evaluated in terms of accuracy and computational efficiency, vitally important factors for numerical optimization.
The implementation of both methods exploit the multi-core architecture of modern CPUs to solve several steps in parallel, drastically
reducing the simulation time. Nevertheless, the computational cost of the AGE is prohibitively high in the simulation of MGMs.
The MB is computationally efficient and good accuracy can be achieved using a multilayer approach.

Index Terms— Air gaps, air-gap element (AGE), computational electromagnetics, electric machines, electromagnetics, finite element
analysis, magnetic gears, moving band (MB), parallel programming, permanent magnet machines.

I. INTRODUCTION

MAGNETICALLY geared machines (MGMs) are a new
class of electrical machine that integrate a conventional

permanent magnet machine with a concentric magnetic gear.
These machines are worth considering because of the excep-
tionally high-torque density that they offer compared with
conventional electrical machines. Compared with mechani-
cally geared systems, MGMs promise to be low-maintenance
devices with no frictional wear and a long service life.
Potential applications include wind power generation [1] and
traction motors [2].

An example of an MGM with an inner stator is shown
in Fig. 1. Because of the complex layout of these machines
and the high number of design variables, a popular approach
to designing MGMs is numerical optimization using finite
element analysis. In this regard, the computational cost of an
analysis is a crucial factor because many analyses are required
for optimization. Analyzing MGMs using the finite element
method is very demanding for two reasons: 1) the lack of
periodicity often necessitates modeling of the full machine
and 2) the machines have multiple air gaps (typically two or
three) that increase the problem complexity when movement
has to be considered.

In this paper, two methods that facilitate movement in
finite element meshes are applied to the simulation of the
MGM shown in Fig. 1 and evaluated in terms of accuracy
and computational efficiency. The methods considered are the
air-gap element (AGE) and the moving band (MB).

II. MOVEMENT FACILITATING TECHNIQUES

The methods to be evaluated are briefly described in this
section. Although, in this context, the methods are applied in
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Fig. 1. Example of a magnetically geared permanent magnet machine with
an inner stator.

static time-stepped simulations, they are just as applicable to
transient analyses such as presented in [3].

A. Air-Gap Element

The AGE [4] is a technique whereby the field in the entire
air-gap region is calculated analytically using a Fourier series
expansion of the vector potential. The field representation must
satisfy the boundary conditions derived from the adjoining
meshed regions. The vector potential in the air gap takes
the form

A(x, y) =
∑

i

αi(x, y)ui (1)

where the αi, expressed as Fourier series, fulfill the role of
shape functions and the ui are the nodal values of the vector
potential on the AGE boundary. Movement is accomplished
by a simple recalculation of the αi without any modifica-
tion to the mesh structure, resulting in simple and efficient
time-stepping [5].

Considering (1), it is clear that all the air-gap nodes are
connected and thus, this method results in a dense block



appearing in the final system matrix that can have a drastic
impact on the computational time required to obtain a solution.
An advantage of the AGE technique is that the results can
be very accurate because of the high order of the field
representation in the air-gap region.

The Fourier series representation of the vector poten-
tial can be used directly to calculate the torque using the
Maxwell stress tensor method

T =
L

μ0

∫ θ2

θ1

r2BrBθdθ (2)

with L the machine’s stack length. As described in [6], this
calculation can be implemented as

T =
L

μ0
Ae

TFAe (3)

with Ae a vector of nodal values of the vector potential along
the boundary of the AGE and F derived from the Fourier
coefficients of the αi in (1)

Fij = r

∫ θ2

θ1

∂αi

∂r

∂αj

∂θ
dθ. (4)

Recently, this method has been applied in optimization, where
it was used to accurately calculate the gradient of the torque
with respect to geometric model parameters [7].

B. Moving Band

This technique was first proposed in [8]. It has sev-
eral advantages over other movement facilitating methods.
It employs no special elements or coupling techniques,
no dense blocks are generated in the system matrix and the
system dimension is not increased. For these reasons, the
MB technique should be superior in terms of computational
speed. However, there are difficulties with this method as
well; remeshing the air-gap region is inevitable and thus the
numbering as well as the amount of nodes in the mesh does not
stay constant. For this reason, the conditioning of the system
matrix is not maintained and preconditioning routines must
be rerun when the mesh changes. In addition, because the
elements in the air gap are geometrically distorted or remeshed
to accommodate arbitrary movement, the results obtained
using this method often have an oscillating error component.
It has been shown that this problem can be drastically reduced
using higher order elements in the MB [9].

There are a few options for calculating torque in the
MB [10]. The Maxwell stress tensor method can also be
applied, but in this paper Coulomb’s virtual work method [11]
was used for torque calculation in the MB

T =
L

μ0

Nmb∑

e=1

∫

Ωe

(
− BT G−1 ∂G

∂θ
+

1
2

B2

|G|
∂|G|
∂θ

)
dΩ (5)

with B = [Bx, By], B = ||B||, G the Jacobian matrix of
the global nodal coordinates with respect to local element
coordinates, and |G| the determinant of G.

Fig. 2. Flowcharts of different movement facilitating solvers. (a) AGE.
(b) MB.

III. FINITE ELEMENT IMPLEMENTATION

The finite element code used in this paper is an in-house
implementation called SEMFEM. The main library is written
in Fortran and C and compiled, with optimization, using the
GNU compilers gfortran and gcc.1 In this section, some details
regarding the implementation are discussed.

A. General

First-order triangular elements were used. This is not
because any of the methods are restricted to first-order
elements, but simply because of the ease of implementation.

A direct method of solving systems of linear equations
was used. The implementation is the sub-program ACTCOL
listed in [12]. The conditioning of the system is improved
before solving using the algorithm proposed in [13].
Newton–Raphson iterations were performed to solve the
non-linear system.

B. Solver Implementations

Flowcharts describing the working of the two solvers are
shown in Fig. 2. Both solvers comprise a serial section and a
parallel section.

The AGE solver utilizes exactly the same mesh for all
time-steps, allowing the preprocessing step, which includes



Fig. 3. Three different meshes used for comparison. (a) Mesh 1. (b) Mesh 2.
(c) Mesh 3.

profile reduction, to be executed only once. Movement is
accomplished by a simple recalculation of some coefficients
and updating the entries in the system matrix. On the other
hand, the MB solver has to perform the preprocessing step for
every time-step, since the connections between nodes in the
air-gap region change.

In both methods, the total number of time-steps to be solved
are distributed between several parallel sections, implemented
using OpenMP [14]. This is a powerful method of paral-
lelization, since it is introduced at a high level. It exploits
the fact that time-steps can be solved independently in static
time-stepped simulations. As shown in Fig. 2, the non-linear
solver and all postprocessing calculations, including the torque
calculation, are executed in parallel.

IV. EVALUATION

The MGM shown in Fig. 1 was analyzed using both the
AGE and the MB. Static time-stepped simulations consisting
of 300 time-steps were performed for three different meshes,
varying in terms of the density of elements. The meshes are
shown in Fig. 3. For Meshes 1 and 2, the MB was setup with

Fig. 4. Variants of the MB technique used with Mesh 3. (a) Single
layer: MB1. (b) Triple layer: MB3.

Fig. 5. Comparison of calculated air-gap torques for all simulations.

a single layer of elements (MB1). For Mesh 3, an additional
variant of the MB was used with three layers (MB3). Fig. 4
shows the two variants of the MB used with Mesh 3. The MB
with three layers was not used for Meshes 1 and 2 because
the coarseness of these meshes, together with thin layers in
the air gap, results in elements with very poor aspect ratios.
Of course, this problem can be avoided by simply refining
the air-gap regions, but such refinements are not applied in
this paper.

Thus, a total of seven simulations are considered. The
simulations were performed at the maximum load angle of
the magnetic gear and rated conditions of the stator. Further
details regarding the simulated operating point can be found
in [15] where the design of the MGM has been described.

The simulations were conducted on a Linux platform using
an Intel Core i7 CPU @ 3.5 GHz with four cores (eight virtual
cores).

A. Comparison of Accuracy

The torques calculated in the three air gaps for all seven
simulations are shown in Fig. 5. The torques in the inner,
center, and outer air gaps are labeled T1, T2, and T3, respec-
tively. From this figure, it is apparent that the average torques



Fig. 6. Close-up view of T2 calculated using different methods.

Fig. 7. Close-up view of T3 calculated using different methods (see Fig. 6
for legend).

calculated using the different methods and meshes match
reasonably well, if not perfectly. However, when one considers
the torque ripple, the results from the AGE and the MB differ
significantly. In Fig. 5, it can be seen that the largest deviation
between the calculated torques occur in T2 and T3. Close-up
views of T2 and T3 are shown in Figs. 6 and 7. The figures
share the legend of Fig. 6.

In the case of T2 (Fig. 6), the MB with a single layer
(MB1) produces a high-frequency ripple even with the fine
mesh (Mesh 3). This is a good example of the problem
mentioned in Section II-B. The deformation and remesh-
ing of the elements result in discontinuities in the problem
between the different time-steps. This causes oscillations in
the calculated torque. Using the three-layer MB (MB3), these
oscillations are dramatically reduced because of the improved
smoothness of the solution in the air-gap region. The results
show very good agreement between the AGE and MB3 for
Mesh 3.

In Fig. 7, the torque ripple calculated using the MB
decreases with increasing mesh density. In the case of Mesh 3,
the results from the AGE, MB1 and MB3 are in close
agreement.

Fig. 8. Comparison of calculated phase voltages for all simulations.

Fig. 9. Close-up view of calculated phase voltages for all simulations
(see Fig. 6 for legend).

Fig. 10. Comparison of simulated (MB1, Mesh 1) and measured no-load
line voltages.

From Figs. 6 and 7, it can be observed that the results from
the different methods tend to converge as the mesh density
is increased. The variation in average torque is due to the
refinement of the mesh in the entire problem domain, not just
the air-gap regions.

The three phase voltages calculated for all simulations are
shown in Fig. 8. The figure contains seven sets of plots that
are indistinguishable from each other in this figure. Fig. 9,
which also uses the legend of Fig. 6, shows a close-up view
of the voltage waveforms. The figure highlights an area where
the difference between the simulations is relatively large. The
three groupings of results correspond to the three different
meshes. Only in the case of Mesh 1 is there a notable
difference between the results from the AGE and the MB.
From these results, it can be concluded that the voltage
computation is less sensitive to the movement handling scheme
than the torque computation. All the methods provide good
accuracy in the calculation of flux linkage and voltage.

A comparison of simulated and measured no-load line
voltages with the machine’s modulator rotating at 150 r/min
is shown in Fig. 10. The simulated results were obtained
using Mesh 1 with MB1. Despite some inaccuracies in



TABLE I

PERFORMANCE COMPARISON OF MOVEMENT METHODS

Fig. 11. Matrices generated by FEM. (a) AGE. (b) MB.

the manufacturing of the prototype, these results agree
fairly well.

B. Comparison of Performance

The calculation times for the different simulations are
given in Table I. The table lists times using a single thread
(no parallelism) as well as times for eight threads, which fully
exploit the available CPU cores. The calculation times for
the MB simulations are consistently reduced by a factor 4
using parallelism. The same speed-up is not quite achieved

for the AGE simulations due to the relatively high cost of the
preprocessing step, which is not performed in parallel. This
effect becomes greater as the mesh density is increased.

Clearly, the MB is much faster than the AGE. Note, also that
as the number of nodes in the mesh increases, the margin that
the MB has over the AGE increases rapidly. In the simulation
of Mesh 1, the MB was roughly 14 times faster, while in the
case of Mesh 3, MB1 and MB3 were 33 and 23 times faster,
respectively.

The difference in performance between the two methods is
far greater than in the simulation of more conventional single
air-gap machines. To explain why the MB is so much faster
than the AGE when simulating MGMs, Fig. 11 shows the
structure of final system matrices obtained using the AGE and
the MB. The contribution of the three AGEs are clearly present
in the AGE matrix in the form of the three dense blocks. The
MB matrix can be solved efficiently using the direct method
employed in SEMFEM, but the higher profile and density
of the AGE matrix has a great impact on the computational
effort required to solve the system. The AGE is especially
costly when simulating MGMs because the number of dense
blocks are equal to the number of air gaps. Furthermore,
the dimensions of the blocks are related to the number of
air-gap nodes, which is typically very high in an MGM without
periodicity.

V. CONCLUSION

This paper has evaluated two methods of simulating move-
ment in MGMs using the finite element method. Both methods
can be executed in parallel, resulting in an appreciable increase
in performance. If only the average torque is required as a
simulation output, the advantage of using the MB is significant
and the accuracy is likely to be sufficient.

The AGE does not suffer from noise associated with dis-
torted elements and for this reason, it may be preferred for
torque ripple calculations. The disadvantage of the AGE is its
high-computational cost. In the case of MGMs, this cost can
be prohibitively high due to the high number of air gaps and
lack of periodicity. When accurate torque ripple calculations
are required, using the MB with three layers is a good choice.
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