
Newton-Raphson solver for finite element methods featuring nonlinear hysteresis models 
(repository copy) 

Article: 

Chama, A., Gerber, S., Wang, R-J., (2018) Newton-Raphson solver for finite element 
methods featuring nonlinear hysteresis models, IEEE Transactions on Magnetics, 54(1): 
7400108, January 2018; ISSN: 1941-0069 

http://dx.doi.org/10.1109/TMAG.2017.2761319 

Reuse 
Unless indicated otherwise, full text items are protected by copyright with all rights reserved. Archived 
content may only be used for academic research. 



Newton-Raphson Solver for Finite Element Methods Featuring
Nonlinear Hysteresis Models

Abdoulkadri Chama, Stiaan Gerber, Member, Rong-Jie Wang, Senior Member, IEEE
Abstract – It is well known that the Newton-Raphson method is the most popular iterative method for nonlinear finite element

problems. The method has a quadratic convergence. Under certain conditions on the Jacobian of the functional and the initial guess
the Newton-Raphson method can converge very fast. However, standard evaluation of such Jacobian may not be possible for the
solution of nonlinear hysteresis field problems. This is due to the nature of the magnetization curves that may not be differentiable
or possess a very steep gradient. In this paper an alternative finite element implementation using Newton-Raphson method for
hysteresis field problems is described in detail. To improve the convergence of the method, a method for evaluation of the initial
guess is also proposed. It is shown that the Newton method can be reliably used for solving hysteresis field problems.

Index Terms—Finite element, Newton-Raphson method, Hysteresis-curve, and weak derivatives

I. INTRODUCTION

Finite element implementation in the context of electromag-
netism often lead to the resolution of nonlinear problems. The
most popular iterative method, the Newton-Raphson method,
does not perform well when dealing with materials exhibiting
hysteresis. As a remedy, alternative algorithms have been
proposed. Among them is the fixed point method [1]–[3],
where a uniform contraction of the functional has to be
satisfied in order to improve the speed of convergence, though
the method is known to be very slow in general with first
order convergence. The contraction condition is obtained by
the computation of a fictitious permeability and magnetization
vector in the nonlinear ferromagnetic material region.

Methods free of derivation are the extensions of the succes-
sive over-relaxation (SOR) method, which are considered as
competitors to the Newton iteration. However, the published
studies are either theoretical with no experimental validation
[4] or with a very limited number of equations [5]. Higher
order than Newton method have been developed for nonlinear
problems in [6]–[8] and reference therein. These methods are
based on a higher evaluation or derivation of the functional
than the Newton method. Therefore, when dealing with large
system of equations such as in finite element analysis, this
can make the program very slow or at least cumbersome and
unattractive [9], [10]. Extensive details for theoretical analysis
of the solution of nonlinear equations can be found in [9],
where the authors stressed the significance of experimental
validation of the performance of iterative solvers. For this
reason it is reasonable to maintain popular algorithm such as
the Newton iteration for problems that have extensive use in
practice.

The objective of this work is to show the possibility of
the implementation of the Newton method in the context of
the hysteresis field problems. First, it is well known that one
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of the drawbacks of the Newton method is related to the
evaluation of the Jacobian [1], which may not always exist.
Such Jacobian in the case of vector-field formulation involves
taking the derivative of some non-smooth interpolation data.
Instead of imposing the strong differentiability of the curve we
make use of weak differentiability. This approach seems more
appropriate since the finite element is by essence considered
only in the sense of distribution.

The rest of the paper is structured as follows: In Section
II, the derivation of the governing problem is discussed.
In Section III its linearized form, for the need of Newton
implementation, is presented. In Section IV the evaluation of
such Jacobian and the choice of the initial guess for rapid
convergence of the method are discussed. Section V will be
devoted to numerical tests and comparison. Conclusions are
given in Section VI.

II. FINITE ELEMENT FORMULATIONS

In this section, the governing equations describing the be-
havior of nonlinear ferromagnetic materials such as electrical
steels is briefly reviewed.

Firstly, the magnetic flux density is defined as

B ≡ µ0(H + M) = ∇×A (1)

where H is the magnetic field strength and M is the magneti-
zation density or magnetization [11]. Generally, B, H and M
are vector fields. By expressing B as the curl of the magnetic
vector potential A, the Coulomb Gauge condition (∇·A = 0)
is ensured and the problem is reduced to solving Ampère’s
law:

∇×H = J (2)

Here, we consider the static case for simplicity, but the theory
is just as applicable to transient formulations.

In (1), the magnetization M is generally a function of H .
In many materials, the magnetization is linearly dependent on
H over a region of interest, such that [11]

M = χmH (3)
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Fig. 1. Hysteresis model showing history (solid line) and possible future
trajectories in the forward (low dashed lined) and reverse (top dashed line)
directions.

In such materials, it is especially convenient to define the
permeability of the material as

µ ≡ µ0(1 + χm) (4)

Using the permeability, M can be eliminated and the flux
density can be expressed as

B = µH =⇒ H =
1

µ
∇×A (5)

This leads to the following, well known, governing equation:

∇× 1

µ
∇×A = J (6)

Modeling materials with nonlinear BH characteristics can be
accomplished in one of two ways. The most common approach
is to use (6), where µ is a nonlinear (possibly tensor) function
of B. This approach is very effective when the material can be
characterized by a simple single-valued BH-curve. However,
in other circumstances, (6) may not be the most appropriate
formulation to use. In this paper, the focus falls on modeling
nonlinear materials exhibiting hysteresis. The hysteresis model
presented in [12] is considered. The scalar version of the model
can be described by the following equation:

H(M) = Hqm(M) +Hanh(M) (7)

where the total H field is calculated as the sum of a hysteretic
component, Hqm(M) and an anhysteric component, Hanh(M).
For details of the implementation, readers are referred to the
literature. The model keeps track of the state (history) of the
material and provides possible future trajectories. A typical
state of such a model is shown in Fig. 1. In effect, this model
provides H as a function of M and thus, an alternative finite
element formulation is used where µ is not introduced and M
remains.

Solving (1) for H , one obtains

H =
1

µ0
∇×A−M (8)

and when (8) is substituted into (2), we obtain

∇× 1

µ0
∇×A = J +∇×M (9)

Fig. 2. Domain Ω containing regions I−V characterized by their permeability

where M is a nonlinear function of H . Note that, although
(9) takes the form of the governing equation often used to
model permanent magnet regions, here it is used in a different
manner to model nonlinear materials with hysteretic behavior.

Permanent magnets are modeled using the following char-
acteristic equation:

B = µmH + Br (10)

where µm is the magnet’s recoil permeability and Br is the
remanent flux density. Thus, in permanent magnet regions, the
following governing equation may apply:

∇× 1

µm
∇×A = J +∇× Br

µm
(11)

where µm and Br are constants.

III. PROBLEM FORMULATION AND ITS LINEARIZED FORM

For application let’s consider a generic magneto-static prob-
lem occupying a bounded region Ω ⊂ R2, with Lipschitz
boundary Γ, as depicted in Fig. 2. The numeration define the
regions characterized by their respective permeability. Γ is the
frontier of Ω where Dirichlet boundary condition (A = 0) is
imposed.

A. The governing equation

Using the properties of the curl operator on the left hand
side of (9) and (11) we obtain:

− 1

µ0
∇2A = J +

∂My

∂x
− ∂Mx

∂y
(12)

in the nonlinear material and air-gap regions, and

− 1

µm
∇2A = J +

∂My

∂x
− ∂Mx

∂y
(13)

in the permanent magnet regions, where M = Br/µm in
(13).

Since our interest is to handle the nonlinearity, (12) and (6)
will be the governing equations for the problem, where the
nonlinearity of the material in the above formulation is carried



by the magnetization vector M . Instead of using BH data we
use MH data provided from the positive feedback theory in
[13] to update the values of M . An example of such MH data
is given by the dashed curves in Fig. 1.

B. Finite element implementation

The variable A will be defined in the Sobolev spaces
Hm(Ω), for non-negative integer m and associated with inner
product and norm, such that for given u and v in Hm(Ω) we
have:

(u, v)m :=

∫
Ω

∑
|α|≤m

Dαu(x)v(x)dx and ‖v‖m := (v, v)
1/2
m

where α = (α1, · · · , αn), n ≤ m, αi are positive integers
and for some function f that is m−times differentiable

Dαf =
∂|α|f

∂α1 · · · ∂αn
.

Using integration by parts the problem takes the following
weak formulation (III-B):

− 1

µ0
(∇A,∇v)0 = (J, v) +

(
∂My

∂x
− ∂Mx

∂y
, v

)
(14)

∀ v ∈ H1
0 (Ω)

where H1
0 (Ω) = {v ∈ H1(Ω) | v = 0, in ∂Ω}.

If we consider Ni , (where i = 1, · · · , N ) to be the finite
element shape functions, the discrete weak formulation of

(III-B) is the problem of finding Ah =

N∑
i=1

AiNi such that

1

µ0
(∇Ah,∇Ni)0 = (J, v) + (

∂My

∂x
− ∂Mx

∂y
,Ni)0 (15)

for i = 1, · · · , N.
Note that in (III-B) and (15) the magnetization vector M
vanishes in the air-gap regions. Now consider the mapping:

F :RN → RN

v 7→ 1

µ
Kv − b(M(v)) ,

where µ is the permeability of the medium, assembling the
right and left hand side of (15) we obtain the system of
algebraic equations:

F(A) =
1

µ0
KA− b(M(A)) = 0 . (16)

The matrice K and vector b in (16) are the finite element
assembly of the left and right hand side of (15), respectively.

The problem (16) above does not involve nonlinear variation
of the permeability, but the vector b is nonlinear in A. For the
fixed point method, as introduced in [1]–[3], [14], (16) can be
reinterpreted as

F(A) =
1

µFP
KA− b(MFP ) = 0 , (17)

where µFP and MFP are being approximated during the
computational process to insure rapid convergence of the
method.

The application of the Newton method to the nonlinear
problems (16) and (17) results in the following linearized prob-
lem: given the vector potential Ak find δAk = Ak+1 −Ak

and hence Ak+1 = δAk + Ak such that:

JF(Ak)× δAk = −F(Ak) . (18)

where JF is the Jacobian of the functional F .

IV. JACOBIAN AND INITIAL GUESS

The resolution of the nonlinear system (18) requires a start-
ing point, A0, and the evaluation of the Jacobian JF(Ak)
at each kth iteration. In this section we discuss how to define
A0 for faster convergence of the Newton method and how to
evaluate the Jacobian regardless of the smoothness of the data.

A. Choice of the initial guess

The Newton method hardly converges if the initial guess is
not chosen properly [15]. To construct a good approximation
of the initial guess we use the idea where the analytical
solution to problem (18) has been provided with constant
values of the permeability in the nonlinear ferromagnetic
material. Therefore, the initial guesses of (16) can be defined
by solving the linear problem:

1

µ0
KA0 = b (19)

where A0 satisfies the Dirichlet boundary conditions A0 = 0
on ∂Ω. To show the closeness of the initial guess to the exact
solution we have considered the vector potential in the back
yoke, just above the slots of the machine shown in Fig. 8b.
The nonlinear solution has been compared to linear solutions
with varying values of the permeability. It can be seen that
high values of the permeability produce good approximations
to the exact solution. All the linear solutions for the vector
potential shown in Fig. 3 are good candidates for the initial
guess compared to a trivial or random initial guess. Using
the equivalence between the MH and BH formulations, we
make the assumption that a good initial guess for the MH
formulation can also be obtained by a linear solution of (19).

B. Evaluation of the Jacobian

To implement the Newton-Raphson method the main chal-
lenge when dealing with the hysteresis curve is the evaluation
of its Jacobian at critical points (e.g. Fig. 4). In this section
we present an approach for computing the Jacobian JF(Ak)
regardless of the smoothness of the MH-data.

For problem (16) the Jacobian can be expressed as:

JF(A) =
1

µ0
K −J b(M), (20)

where J b(M) =
∂b(M)

(∂A1, · · · , ∂AN )
. To compute the compo-

nents of J b(M) on an element T of the mesh it is necessary
to find the value m of the magnetization vector M such that:

Hk(mk) +mk =
1

µ0
Bek (21)
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Fig. 3. Vector potential in the back yoke of the machine in Fig. 8b.

where Bek is the flux density at the corresponding element and
Hk(mk) the magnetic field intensity at mk. The k subscripts
denote either the x or y-components.

Problem (21) is nonlinear in m and needs to be solved at
each iteration for each element. To make the resolution much
faster and easier one can first introduce the set of data, Fk =
Hk + Mk. Using the interpolation of Fk the solution of (21)

can be found as the intersection of Fk and the line y =
1

µ0
Bk

as shown in Fig. 5. It can also be observed from Fig. 5 that
the interval [mi,mi+1] contains the root m? of problem (21),

which is the smallest distance from points of Fk −
1

µ0
Bk

to the x-axis. Instead of globally interpolating the data Fk,
which is computationally costly, one can interpolate the data
around mi and mi+1 to find a good approximation of m?; for
a cubic interpolation the set of data {mi−1, mi, mi+1, mi+2}
or {mi, mi+1, mi+2, mi+3} can be interpolated.

The Jacobian of b(M) depends only on the derivative of
M with respect to the nodal values of A. Assuming the MH-
curve to be strongly differentiable, the derivatives with respect
to Ai of the left and right hand side of (21) give:(

∂Hk(mk)

∂mk
+ 1

)
∂mk

∂Ai
=

1

µ0

(
∂Bek
∂Ai

)
(22)

Then (22) implies that

∂mk

∂Ai
=

[
µ0

(
∂Hk(mk)

∂mk
+ 1

)]−1(
∂Bek
∂Ai

)
(23)

Note that H varies always in the direction of M , which
implies that ∂H(mk)

∂mk
+ 1 6= 0. Therefore, the expression (23)

is well defined.
However, at certain critical points (e.g. Fig. 5) such as at

angular, inflection or discontinuity points the equality in (22)
ceases to be satisfied as the derivative ∂H(mk)

∂mk
is undefined.

Since the finite element method is in essence based on weak
formulations, it makes more sense to deal with distributional
derivatives. Indeed, the linear shape functions are in general
not differentiable and their Laplacian ∇2Ni are evaluated via
weak differentiability. A graphical interpretation of Ni and

Fig. 4. Critical point of the Hysteresis curve.

Fig. 5. Graphical interpretation of m? solution to (21).

their derivatives in a patch Ki are depicted in Figs. 6 and 7.
Fig. 7 is a projection of a 3D graph in a 2D plane, a closer
look at the vertical axis shows different values, indicated in
dot, of the derivative at point (xi, yi).

To evaluate ∂mk

∂Ai
a weak form of (21) can be constructed

as follows:
(f(mk), ϕ)0 =

1

µ0
(Bk, ϕ)0 (24)

where ϕ is an interpolation test function and f(mk) =
H(mk) +mk is the interpolation of F . It then follows that(

∂f(mk)

∂Ai
, ϕ

)
0

=
1

µ0

(
∂Bk
∂Ai

, ϕ

)
0

(25)(
∂f(mk)

∂mk

∂mk

∂Ai
, ϕ

)
0

=
1

µ0

(
∂Bk
∂Ai

, ϕ

)
0

(26)

The derivatives in (25) and (26) are evaluated at mk = m?
k,

therefore,
∂mk

∂Ai
is fixed term.

From (26) we can write:

∂mk

∂Ai
=

1

µ0

(
∂f(mk)
∂mk

, ϕ
)

0

(
∂Bk
∂Ai

, ϕ

)
0

(27)

Using integration by part and the weak differentiability of
f(mk) at mk = m?

k the denominator in (27) can be expressed
as: (

∂f(mk)

∂mk
, ϕ

)
0

= −µ0

(
f(mk),

∂ϕ

∂mk

)
0

(28)

Equations (20) to (26) are the components of the vectorized
formulation of M and H . Two dimensional vectorized form of
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the hysteresis data are obtained by using the one dimensional
data depicted in Fig. 4 and 5 and the vectorial transformation
can be realized by using the method described in [14], where
given the magnetic field strength Hϕ(B(ϕ)) the transforma-
tion formula read as:

H(B) =
1

Q(N)

N∑
i=1

eϕHϕ(Bϕ) , (29)

where N is the number of projection vectors eϕ, Q an
identification number. Clear description of these parameters
and the projection Bϕ of the magnetic field is given in [14].
The field strength Hϕ is derived from the scalar model
of Fig. 4. To obtain Hϕ(Bϕ) we use the scalar relation
B = µ0 (H(Bϕ) +M(Bϕ)) and the graph 4 to solve for
M(Bϕ).

To explicitly formulate the Jacobian one may observe first
that the first term of the system (16) is linear and hence its

Jacobian will produce
1

µ0
K. For the second term which is

nonlinear its entries are defined by
∂bi(M)

∂Aj
where bi(M)

is the ith element of b(M). Considering the components of
M e, on an element, to be m1 and m2 we have

bi(M) = (∇×M e, Ni) =

(
m2,

∂Ni
∂x

)
−
(
m1,

∂Ni
∂y

)
,

which can then be used to obtain
∂bi(M)

∂Aj
=

(
∂m2

Aj
,
∂Ni
∂x

)
−
(
∂m1

Aj
,
∂Ni
∂y

)
.

Note that the entries of the Jacobian are evaluated at the
element level which can then be used to assemble the global
matrix.

(xi, yi)

ϕi(xi, yi) = 1

Ki

(a) Two-dimension shape function in a compact
support Ki.

(xi, yi)

αi(x, y)

Ki

(b) αi is the derivatives of ϕi at the ith-node in
Ki.

Fig. 7. Finite element shape functions and their derivatives, [17].

V. NUMERICAL VALIDATION OF THE THEORY

This section is devoted to the numerical validation of the
theory discussed in Section II. Two examples have been con-
sidered, see Figs. 8a and 8b, to demonstrate the reliability of
the Newton method in the context of hysteresis field problems.
The convergence performance of the proposed method under
particular choice of the initial guess is also evaluated.

Both the conventional (BH data based) and the proposed
finite element formulations (MH data based) are implemented
for both examples. The BH curve used in the simulations is
shown in Fig. 9. Flowcharts describing the implementation of
both methods are given in Figs. 10 and 11.

The magnetic flux distribution obtained from the finite
element simulations for both examples is shown in Fig. 12.

The accuracy of the method is evaluated by comparing
the solutions obtained from the MH formulation and the BH
formulation. The relative errors as illustrated in Figs. 13(a)
and 13(b) clearly show the very close agreement between the
two implementations.

To prove the effect of choosing the initial guess the absolute
errors, Ak+1−Ak, and the time of convergence by the differ-
ent formulations are given in Tables I-IV. The initial guesses



(a) Linear PM machine example.

(b) Rotary PM machine example.

Fig. 8. Machine examples used for numerical validation of the proposed
method.
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Fig. 9. Nonlinear BH-curve used for numerical validation.

are chosen in both cases by solving the linear problem with
different permeabilities for the BH formulation and different
values of the magnetic field strength m0, respectively. For
completeness particular choices of initial guess such as A to
be trivial and randomly generated A are also considered.

It is clear from the above that the initial guesses derived

TABLE I
BH FORMULATION: EXAMPLE 1, FIG. 12A

µr Error Time in seconds

10 3.29 × 10−12 3.02
103 7.50 × 10−14 4.75
107 7.63 × 10−14 3.05
A = 0 7.63 × 10−6 9.16

10−10: no convergence found

Get A0 from the
linear problem:
νs =constant

Iteration:

k = 0

k = k + 1

Get ∆Ak from:

JF(Ak)∆Ak = F(Ak)

Get ν from the BH-data,

by using: Bk = ∇×Ak

Update the solution:

Ak = Ak +∆Ak

Test if: ‖∆Ak‖0 ≤ tol

Go to next
iteration

 End

No

Yes

Fig. 10. BH implementation.

TABLE II
MH FORMULATION: EXAMPLE 1, FIG. 12A

m0 Error Time in seconds

0 1.07 × 10−14 2.66
5 × 103 1.88 × 10−9 0.77
107 4.79 × 10−14 3.15
10−7 1.88 × 10−11 9.82

A = 0: no convergence found

TABLE III
BH FORMULATION: EXAMPLE 2, FIG. 12B

µr Error Time in seconds

103 4.67 × 10−14 3.97
10−10 7.92 × 10−5 24.92
107 5.00 × 10−14 12.18

A = random: no convergence found

TABLE IV
MH FORMULATION: EXAMPLE 2, FIG. 12B

m0 Error Time in seconds

0 1.48 × 10−12 5.96
5 × 103 1.48 × 10−14 1.48
107 4.93 × 10−11 7.15

A = random: no convergence found



Get A0 from the
linear problem:
ms =constant

Initialize hysteresis
model with

demagnetizing spiral

Iteration: k = 0

k = k + 1

Get ∆Ak from:

JF(Ak)∆Ak = F(Ak)

Get ms from the

Hysteresis model, and :

µ0(H +M) = ∇×Ak

Update the solution:

Ak = Ak +∆Ak

Go to next
iteration

Test if: ‖∆Ak‖0 ≤ tol

Yes

No

Fig. 11. MH implementation. Here ms is a constant value of the magneti-
zation vector M .

by solving linear formulations with appropriate choice of µr
in the case of BH and m0 in the case of MH improve
dramatically the speed of convergences.

To also ensure that the MH formulation does respond to
the Newton iteration convergence criteria, the residual of such
convergence against the number of iterations is also plotted in
Fig. 14. Comparable convergence performances are evident.

VI. CONCLUSION

The Newton-Raphson method is a commonly used iterative
method for nonlinear problems. The method has a quadratic
convergence. Under certain conditions on the Jacobian of the
functional and the initial guess the Newton-Raphson method
converges very fast. However, standard evaluation of such
Jacobian may not be possible for the solution of nonlinear
hysteresis field problems. This is due to the nature of the
MH and sometimes BH curves that may not be differentiable
or possess a very steep gradient. To the best knowledge of
the authors, there has not been published work that considers
using Newton method for the hysteresis field problem. In
this paper an alternative finite element implementation using
Newton-Raphson method for hysteresis field problems has

(a) Example of a linear machine.

(b) Example of a rotating machine.

Fig. 12. Contour plots of vector potential A

been proposed and described in detail. The weak differentiabil-
ity of the proposed approach makes the evaluation of Jacobian
possible regardless of the structure of the hysteresis models.
To improve the convergence of the method, a method for
evaluation of the initial guess is also proposed. For validation
purpose, both the proposed formulation and the standard BH
formulation are implemented in two case studies. The results
from both methods show close agreement. It has shown that
the Newton method can be reliably used for solving hysteresis
field problems.
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