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Abstract—In this paper, a 2-D static finite element (S-FE)
analysis method of a slip-magnetic coupling is proposed. The
FE analysis method uses the frozen permeability technique,
which allows the user to accurately determine the relevant model
parameters by including the effects of saturation and cross-
coupling. Moreover, the proposed analysis method accurately
predicts the zero-sequence (3rd harmonic) and higher-order
harmonic induced voltages and currents which are present in
magnetic couplings. It is found that the zero-sequence and higher-
order harmonic currents contribute to the net-torque of the
magnetic coupling and their effects are more prevalent at low
loads. The method is verified by means of comparing its results to
those obtained from a commercial transient FE (T-FE) package.
The S-FE method solutions are verified over a wide slip range,
and are shown to be significantly less computationally time
intensive compared to the T-FE package.

Index Terms—Magnetic coupling, zero-sequence analysis, har-
monics, finite-element analysis, permanent magnet, radial flux.

I. INTRODUCTION

Magnetic couplings (MCs) are of particular interest in
industrial applications because they allow torque to be trans-
ferred between two systems without mechanical contact. This
has numerous advantages including a reduction in noise,
vibration, protection and friction between the coupled systems.
However, modelling and predicting the torque performance of
MCs is challenging as it requires an accurate solution of a
complex 3-D magnetic field problem.

In literature, both numerical and analytical methods are used
to solve the magnetic field distribution problem. Numerical
methods which use 2-D and 3-D finite element (FE) analysis
[1]–[5] gives accurate results, however, it is argued that they
are too computationally-time intensive. In contrast, it is argued
that analytical methods require far less computational time
because they are based on underlying assumptions which
greatly simplifies the problem. The most widely used ana-
lytical methods involve solving the torque and force between
two magnets based on the magnets’ geometry [6]–[9], or by
employing magnetic equivalent circuits [10]–[14] or by divid-
ing the geometry of the MC into domains (PM, air-gap, iron,
etc) and then solving the magnetic field problem in each of the
subdomains [15]–[21]. These analytical methods, however, are
restricted to slotless MCs and aren’t easily applicable to MCs
with slotted configurations due to the inherent complexity of
slotted geometries. The paper by [22] proposes an analytical
method to predict the magnetic field in axial-flux MCs with a
slotted conductor topology, however, the inherent complexity
of the slotted conductor design resulted in inaccuracies in
predicting torque when compared to 2-D and 3-D FE analysis
methods.

A study conducted in [23] found that by replacing the
slotless MC topology with a toothed configuration, similar to
those used in conventional electrical machines, results in a
significant reduction in the PM mass required to generate a
comparable torque response over the feasible slip range. The
toothed-MC topologies considered in [23] are referred to as
slip-permanent magnetic couplers (S-PMC).

S-PMCs consists of two rotors separated by an air-gap. One
rotor is equipped with PMs and the other consists of a toothed-
stator which is equipped with individually short-circuited coils.
In [24], a 2-D-FE analysis method is proposed to model
and predict the torque performance of S-PMCs, however, the
method of [24] has a few drawbacks. It does not include
the effects of saturation by neglecting the effects of cross-
coupling. Additionally, the method neglects the harmonics due
to the PM rotor by assuming purely sinusoidal coil currents
which is shown to be inaccurate for certain slot configurations.
Furthermore, it is unclear as to what influence these higher-
order harmonics has on the current and torque of the S-PMC.

The contribution of this paper is to propose a 2-D Static-
FE (S-FE) methodology to quickly and accurately model
and analyse S-PMCs. The proposed method allows the user
to determine the zero-sequence and higher-order harmonic
current components which are present in these types of S-
PMCs, something which has hitherto been ignored. By incor-
porating the higher order harmonics, an accurate solution of
the coil currents and hence the S-PMC torque can be obtained.
Additionally, the method incorporates the effects of saturation
and cross-coupling by using the frozen permeability method
[25]–[29]. Furthermore, this method provides the user with a
method to quickly and accurately determine the model and
performance parameters of S-PMCs for design optimization
purposes. The proposed methodology is verified by comparing
its results to the results of a commercial transient-FE package.

II. MODELLING

In this section an analytic model of the S-PMC in Fig.
1a is derived. The considered S-PMC consists of 28 magnet
poles, 30 slots and 30 individually short-circuited, non-overlap
coils. An example of one such short-circuited coil is shown
in Fig. 1b. In [24], it is shown that the 30 short-circuited
coils of the S-PMC can be divided into 10 balanced three-
phase sets. Moreover, due to symmetry, 15 adjacent coils
can further be divided into 5 three-phase coil sets to form
a complete winding. Fig. 1c shows a phase-vector diagram
of a generalized n-phase S-PMC. If we first consider only
one three-phase set, then from the dq0 voltage equations of a
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Fig. 1: (a) FE model of a multi-phase slip coupler, (b) example of an individual short-circuited coil, e.g. A1 −A
′
1, and (c) vector diagram for the nth three

phase coil set.

three-phase winding PM synchronous machine we have

vd = Rsid +
dλd

dt
− λqωe

vq = Rsiq +
dλq

dt
+ λdωe

vo = Rsio +
dλo

dt
.

(1)

where the flux linkages are functions of iq , id, io, α, and λm.
The electrical angular position of the rotor is given by α, and
λm is the PM stator flux linkage.

If we consider average inductances with rotor position and
average (steady-state) Id and Iq currents (that we want to
solve) and thus average λd and λq flux linkages, then for the
considered S-PMC with its short-circuited stator windings (1)
simplifies to

0 = RsnIdn − λqnωe (a)
0 = RsnIqn + λdnωe (b)

0 = Rsnion +
dλon

dt
, (c)

(2)

where the subscript n denotes the set number of a particular
three-phase coil set where n = 1, 2, ..., 5. Each of the
individually short-circuited coils have identical coil currents
such that Id1 = Id2 = ... = Id5 = Id and Iq1 = Iq2 = ... = Iq5
= Iq . Consequently, the total d-axis flux linkage for the first
coil set, n = 1, can be written as

λd1 =[Ld(1,1) + Ld(1,2) + .....+ Ld(1,5)]Id

+ [Ldq(1,1) + Ldq(1,2) + .....+ Ldq(1,5)]Iq

+ λdm(1)

=Ld1Id +Mdq1Iq + λdm1.

(3)

Similarly, the total q-axis and the zero-axis flux linkages for
the first coil set n = 1 can be written as

λq1 =[Lq(1,1) + Lq(1,2) + .....+ Lq(1,5)]Iq

+ [Lqd(1,1) + Lqd(1,2) + .....+ Lqd(1,5)]Id

+ λqm(1)

=Lq1Iq +Mqd1Id + λqm1,

(4)

and

λo1 =[Lo(1,1) + Lo(1,2) + .....+ Lo(1,5)]io + λom(1)

=Lo1io + λom1.
(5)

The flux linkages of equation (2) can now be rewritten in
general for any particular coil set as

λd = LdId +MdqIq + λdm (a)
λq = LqIq +MqdId + λqm (b)
λo = Loio + λom, (c)

(6)

where Ld, Lq and Lo are the respective total dq0-axis self-
inductances, and Mdq = Mqd are the respective total dq-axis
cross-coupling mutual-inductances. It should be noted that 3-
D effects such as the end-winding resistance and inductance
are calculated and accounted for as per [30] and are included
in Rsn and Ldq0 in (2) and (6) respectively.

If we substitute λq and λd into (2a) and (2b) respectively,
and re-write the resulting equations in matrix form, we obtain

Idq = Z−1
dq Edq, (7)

where

Edq =
[
ωeλqm −ωeλdm

]T
, (8)

Idq =
[
Id Iq

]T
(9)

and

Zdq =

[
(Rs − ωeMqd) −ωeLq

ωeLd (Rs + ωeMdq)

]
. (10)

III. ZERO-SEQUENCE ANALYSIS

We are particularly interested in the alternating zero-
sequence (3rd harmonic) current component of (1). By con-
sidering the zero-sequence components of (2c) and (6c),

dλo

dt
= Lo

dio
dt

+
∂λom

∂α

dα

dt

= Lo
dio
dt

+ koωe

[
ko =

∂λom

∂α

]
,

(11)

we see thus that an alternating voltage is induced in the
zero-sequence winding by the varying zero-sequence PM flux
linkage. By assuming only a 3rd zero-sequence harmonic,
which is a valid approximation as the higher-order zero-
sequence harmonics are very small, then the 3rd harmonic



zero-sequence harmonic flux linkage in phase a and in the
zero-sequence circuit due to the PM can be expressed by the
general form as

λam(3) = λom(3) = −λm(3) cos(3α+ ϕ(3)). (12)

The minus sign in (12) is normally the case for the 3rd

harmonic. The peak value of the flux linkage of (12) is
determined by the Fourier transform method described in
Section IV. Using (12), the 3rd harmonic induced voltage in
the zero-axis circuit is given from (11) by

eo(3) = ko(3)ωe = 3ωeλm(3) sin(3α), (13)

where α = ωet. From (2c), (11) and (13) it follows that

3ωeλm(3) sin(3ωet) = Rsio(3) + Lo(3)

dio(3)

dt
. (14)

From (13), the peak zero-sequence harmonic voltage is given
by

Eo(3) = 3ωeλm(3), (15)

and hence the peak zero-sequence harmonic current, according
to (14), by

Io(3) =
Eo(3)√

R2
s +X2

o(3)

, (16)

where Xo(3) = 3ωeLo(3). The latter inductance Lo(3) can be
determined from the frozen permeability method. The zero-
sequence current can be expressed from (14) and (16) as

io(3)(t) = Io(3) sin(3ωet− θo(3)), (17)

where θo(3) is the zero-sequence power factor angle given by

θo(3) = tan−1

(
Xo(3)

Rs

)
. (18)

IV. FEA COMPUTATION OF COIL CURRENTS

It should be noted that the coil currents, and hence the
performance, of the slip coupler isn’t known for a given slip
value. Consequently, in this section, a solution method is
proposed to verify the analytical derivations outlined in the
previous sections whereby the dq0-axis inductances and coil
currents of (6) are determined. To achieve this, a S-FE, frozen
permeability method (FPM) is used.

In the FPM, the iron magnetic permeabilities of each S-
FE mesh element is fixed or ”frozen” (for a given rotor
position) after each non-linear S-FE solution to preserve the
information regarding the saturation of the machine at the
specified load condition and rotor position. By freezing the
iron magnetic permeabilities, the non-linear problem turns into
a linear problem and additional (fast) linear S-FE solutions can
be used to determine the individual flux linkage components
of λdq0 as expressed in (6).

A. Harmonic Components

Fig. 2 shows the theoretical PM-rotor MMF harmonics for
a 28-pole, 30-slot S-PMC with a magnet pitch of σm = 100%.
From Fig. 2, it can be seen that the higher-order rotor MMF
harmonics aren’t insignificant and will induce voltages and
currents in the short-circuited coils of the S-PMC at various
harmonic frequencies. These higher-order harmonics will alter
the shape of the coil currents and cause them to become non-
sinusoidal.

To solve the harmonic currents of (7), the PM flux linkages
of (8) and the impedances of (10) must be determined. To
do this, the phase currents and flux linkages are expressed in
terms of Fourier components as

sabc(α) =


sa(α) =

m∑
k=1

Akcos(kα+ ϕk)

sb(α) =
m∑

k=1

Akcos(kα+ ϕk − 2π
3 )

sc(α) =
m∑

k=1

Akcos(kα+ ϕk + 2π
3 )

(19)

where sabc(α) are the phase-domain FE variables, k represents
the harmonic order, Ak is the amplitude of the kth harmonic
component, ϕk denotes the phase shift of a given signal and
m denotes the highest-order harmonic component considered
within a phase-domain signal. The Park transform can then
be utilized on the respective harmonic components of sabc(α)
to obtain the respective dq-axis harmonic components in the
harmonic rotor reference frames as

Sd(k)(α) =
2

3
Akcos(ϕk)

Sq(k)(α) = −2

3
Aksin(ϕk)

(20)

and the inverse assa(k)(α)sb(k)(α)
sc(k)(α)

 = K−1
p (kα)

[
Sd(k)

Sq(k)

]
, (21)

where K−1
p (kα) is the inverse Park transformation matrix.

B. PM-Flux Linkages

To solve for the dq PM flux linkages of (8), 2ν non-linear
S-FE solutions are run at 2ν rotor positions for a given current
iabc(α), where the rotor positions are equally spaced across
a magnet pole pitch and where ν is the number of harmonic

1 3 5 7 9
0

0.5

1

1.5

Harmonic Order [k]

M
M

F
A

m
pl

itu
de

[p
u]

Fig. 2: Per-unit PM-rotor MMF harmonics for a 28-pole, 30-slot S-PMC with
a magnet pitch of σm = 100% (per unit values are calculated with the working
harmonic as the base value, where the working harmonic is nr = 1× 7).



components being solved [e.g. if only the 1st, 3rd and 5th

harmonics of Fig. 2 are considered, then ν = 3]. The PM
flux linkage λabcm(α) values at the 2ν positions are then
obtained by the FPM with iabc(α) = 0 used in the linear S-FE
solutions. With λabcm(α) known, the Fourier constants Ak and
ϕk are determined using (19) and from that, the harmonic flux
linkages λdm(k) and λqm(k) are determined using (20). Note
that λm(3) of (13) and (14) is already obtained from (19).

C. Inductances

The FPM is used to determine the dq0-inductances by
setting the excitation due to the PMs to zero and executing
linear FE solutions where the machine is excited with only
Id(k), Iq(k), or io(3) currents respectively, where k represents
the harmonic order of a particular current input. The total
respective dq0 inductances for each harmonic order can then
be determined by

Ld(k) =
λdd(k)

Id(k)

∣∣∣∣
Iq=io=0

Mqd(k) =
λqd(k)

Id(k)

∣∣∣∣
Iq=io=0

Lq(k) =
λqq(k)

Iq(k)

∣∣∣∣
Id=io=0

Mdq(k) =
λdq(k)

Iq(k)

∣∣∣∣
Id=io=0

Lo(3) =
λoo(3)

io(3)

∣∣∣∣
Id=Iq=0

(22)

where λdd(k), λqq(k), and λoo(3) are the respective flux
linkages resulting from linear FE solutions where only kth-
order d-axis currents or q-axis currents or zero-axis currents
respectively are used to excite the machine. Moreover, λqd(k)

is the q-axis cross-coupling flux linkage due to the kth-order
d-axis current. Similarly, λdq(k) is the d-axis cross-coupling
flux linkage due to the kth-order q-axis current.

D. Solving Coil Currents

Since the coil currents of the slip coupler aren’t known for
a given slip value, an iterative technique is required to solve
the coil currents at a specific load condition. The iterative
technique is outlined as follows:

1) The dq0 PM flux linkages are determined as outlined in
Section IV-B. An initial set of dq0 inductances are then
obtained by solving linear FE solutions with kth-order
current inputs as outlined in (22).

2) The dq voltage matrix Edq of (8) and the dq impedance
matrix Zdq of (10) can now respectively be determined
for each harmonic component, along with the zero-
sequence reactance Xo(3) = 3ωeLo(3). Equation (7) can
now be solved separately for each harmonic component
in terms of the current matrix Idq(k) of (9) and an
updated set of dq harmonic currents are obtained.

3) With λm(3) known from the first step, the peak value
of the zero-sequence voltage Eo(3) is determined from
(15) and the peak value of the zero-sequence current is
determined from (16). The zero-sequence power factor
angle is determined from (18).

4) The updated dq0-harmonic currents are separately trans-
formed into their respective abc-harmonic currents using

(21) and are compared to the previous iteration’s results.
Steps 1) to 4) are iterated until each harmonic current
component converges.

Fig. 3 shows the results of the RMS current Irms(1) of
the fundamental harmonic component versus a convergence
iterator Q for various slip (load) conditions. Fig. 3 reveals that
the proposed S-FE method requires at least Q = 4 iterations for
the currents to converge for the considered slip values which
indicates the proposed method’s speed and effectiveness.
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Fig. 3: RMS current of the fundamental (k = 1) harmonic component versus
iteration number for slip values: s = 1%, 3%, 6% and 12%.

V. DEVELOPED TORQUE

It must be noted from the steady-state modelling of (2) that
the dq-currents and flux linkages are DC quantities, while the
zero-sequence current and flux linkages are AC quantities. The
instantaneous power from the circuit equations of (2) is given
for a three-phase winding by

pdq0 =
3

2
[λdωeIq − λqωeId + 2ko(3)ωeio(3)]. (23)

Using (6) and (13), (23) becomes

pdq0 =
3

2
ωe[λdmIq − λqmId + (Ld − Lq)IdIq

+Mdq(I
2
q − I2d) + 6λm(3) sin(3α)io(3)]

= sωs[Tpm + Tr + Tm + τo(3)]

= sωs[Td + τo(3)],

(24)

where sωs is the slip speed and s the slip defined by

s =
ωt − ωs

ωs
, (25)

and where ωs is the synchronous output speed and ωt the input
speed of the coupler which is defined as

ωt = (1 + s)ωs. (26)

Hence, from the above, the slip-coupler torque can then be
described by

Tpm =
3

4
p[λdmIq − λqmId] (a)

Tr =
3

4
p[Ld − Lq]IdIq (b)

Tm =
3

4
pMdq[I

2
q − I2d ] (c)

τo(3) =
9

2
pλm(3) sin(3α)io(3), (d)

(27)



where Tpm is the rotor PM-flux torque and Tr, Tm, τo(3)
are the respective reluctance, cross-magnetization and zero-
sequence torque components. If we focus for a moment on the
zero-sequence torque of (27d). Replacing the zero-sequence
current of (27d) by (17) we get

τo(3) =
9

2
pλm(3)Io(3) sin(3α) sin(3α− θo(3))

=
9

4
pλm(3)Io(3)[cos(θo(3))− cos(6α− θo(3))]

=
9

4
pλm(3)Io(3)[1− cos(6α)] [assuming θo(3) ≈ 0]

= To(3) − τa(3).
(28)

This result shows that the zero-sequence induced voltage
and current in the S-PMC generates a DC- and an alternating
component of torque. If the torque equations of (27a) - (27c)
are calculated for each harmonic component k, the total
generated torque of the S-PMC is calculated by

Tnet = N

[
To(3) +

m∑
k=1

Td(k)

]
(29)

where N = 5 is the number of balanced three-phase sets.
The total conduction losses can then be calculated by

Pcu = sωsTnet (30)

VI. RESULTS

In this section, the performance and the computed parameter
results using the solution method proposed in Section IV
are given for the 28-pole, 30-slot S-PMC of Fig. 1. The
dimensions and parameters of the considered S-PMC are given
in Table I.

In the analysis, the highest-order harmonic selected was m
= 5, then ν = 3 according to Fig. 2 and solutions at six rotor
positions are required to determine the harmonic components.
The proposed method’s results are compared and validated
with the commercial transient-FE package JMAG Designer.

A. Flux Linkage

Fig. 4 shows the S-FE-determined PM-flux linkages at
rated slip. From this, it is clear that there is a zero-sequence
PM-flux linkage component present. Additionally, there is a
small contribution of the fundamental q-axis PM-flux linkage
λqm(1), however, the fundamental d-axis PM-flux linkage
λdm(1) is the dominant contributor to the PM-flux linkage.

TABLE I
DIMENSION AND PARAMETER VALUES OF THE SLIP COUPLER.

Dimension Value Parameter Value
Outer diameter 173.5 mm Rated output speed 600 rpm
Inner diameter 118.9 mm Rated slip 3%
Wound rotor yoke 2.99 mm Number of poles 28
Tooth height 15 mm Number of slots 30
Tooth width 4.86 mm Magnet type NdFeB (N48H)
Coil height 14.8 mm Coil resistance 60 uΩ
Magnet height 3.27 mm Current density 3.71 A/mm2

Magnet pitch 81% Rated power 2.5 kW
Air gap 1.2 mm Rated torque 40 Nm
Axial length 54.74 mm Rated frequency 4.3 Hz
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Fig. 4: Static-FE-determined PM-flux linkage component results obtained
from a linear FE solution where the Idq0(k) = 0. The fundamental and
zero-sequence harmonic flux linkages are on the primary y-axis and the 5th-
harmonic dq flux linkages are on the secondary y-axis.

Also shown are the 5th harmonic dq PM-flux linkages. It
can be seen that the 5th harmonic dq PM-flux linkages are
relatively small and of comparable magnitude.

B. Performance Results

Table II provides the performance results of the considered
S-PMC shown in Fig. 1 at rated conditions (slip = 3%). It can
be seen that the q-axis current of the fundamental harmonic
is the largest of the current components. Furthermore, it can
be seen that the peak value of zero-sequence current Io(3) is
comparable to that of the 5th harmonic dq-currents.

Also shown in Table II is the dq0-axis inductances as
calculated from (22). It can be seen that the harmonic self-
inductances are of comparable magnitude and that the har-
monic mutual-inductances are of negligible magnitude.

The S-PMC torque components of (27) are determined
separately for the respective individual harmonic components
and are given in Table II. It can be seen that the PM-flux
linkage torque of the fundamental component Tpm(1) is the
main contributor to the developed torque, whereas the zero-
sequence and 5th harmonic torque components are negligibly
small. Furthermore, the reluctance Tr and cross-magnetization
Tm torque components are negligible.

TABLE II
PERFORMANCE PARAMETER VALUES AT RATED CONDITIONS OF

PM-SLIP COUPLER.

1st Harmonic 3rd Harmonic 5th Harmonic
Parameter Value Parameter Value Parameter Value
Current A Current A Current A
Id(1) 137.5 Io(3) -24.38 Id(5) -8.81
Iq(1) 422.7 —— —— Iq(5) -28.6
Inductance nH Inductance nH Inductance nH
Ld(1) 378 Ld(5) 353.1
Lq(1) 435 Lo(3) 389 Lq(5) 355.7
Mdq(1) 21 Mdq(5) 3.4
Torque Nm Torque Nm Torque Nm
Tpm(1) 40.9 Tpm(5) 0.039
Tr(1) -0.34 To(3) -1.23 Tr(5) 0
Tm(1) 0.36 Tm(5) 0



C. Verification

To validate the results of the proposed S-FE method, the
S-PMC of Fig. 1 is also modelled using the commercial
transient-FE (T-FE) package JMAG Designer.

Fig. 5 shows the coil current versus rotor position at slip =
1% and at rated slip (3%) as determined by the T-FE program
JMAG Designer and the S-FE solution method. It can be seen
that a good agreement between the results is obtained. It is
clear that the 3rd harmonic and the 5th harmonic components
have a significant effect on the shape of the coil current and
that the assumption that the coil currents are sinusoidal isn’t
valid for this S-PMC topology.

Fig. 6 shows the results for current harmonic amplitude
versus slip percentage for the S-FE and T-FE solutions. From
this, it can be seen that a good agreement between the
results is achieved over a wide slip range, which validates
the effectiveness of the proposed S-FE solution method.

Fig. 7 shows the results for the developed torque of the
considered S-PMC as determined by the T-FE solution and
the proposed S-FE solution method. As can be seen, a very
good agreement between the results is achieved over a wide
slip range.

VII. DISCUSSION OF THE PROPOSED SOLUTION METHOD

With reference to Fig. 3, the average time taken for the
proposed S-FE method to solve the S-PMC currents is ap-
proximately 100 seconds. The mesh used in the S-FE method
consists of 12030 elements and 7001 nodes. This was done on
a Intel(R) core i7 CPU which has a clock speed of 3.40 GHz
with 16 GB of RAM. In comparison, on the same computer
and with a similar number of mesh elements (12988) and
nodes (6928), the commercial T-FE program JMAG requires
on average approximately 900 seconds to provide a convergent
solution for the S-PMC currents. Hence the proposed S-FE
method is 9 times faster than the T-FE solution which is a
significant reduction in computation time, something which is
very important in design optimization applications.

It should be noted the proposed S-FE method presented
in this paper considers the 5th harmonic as the highest-order
harmonic component present in the coil currents, however, the
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proposed method is suitable for the prediction of even higher-
order harmonics. However, additional harmonics will result in
longer simulation times. Furthermore, if certain higher-order
harmonic currents are found to be negligible, the number
of linear FE-solutions per iteration can be reduced, which
will reduce the solution time of the proposed S-FE solution
method.

VIII. CONCLUSION

A 2-D static-FE modelling and performance solution
method for iron-cored PM slip couplers is proposed and
evaluated in the paper. Particular attention is given to the zero-
sequence (3rd harmonic) and 5th harmonic parameters, and the
performance of the coupler. The main findings are summarized
as follows.

The proposed solution method is shown to solve the dq0
currents of the coupler within four iterations fairly independent
of the given slip value. The accuracy of the solution value over
a wide slip range is confirmed by transient-FE commercial
package solutions. Furthermore, the proposed method is fast
and ideally suited for the design optimisation of these PM slip
couplers.

It was found that the zero-sequence and 5th harmonic



currents have a significant effect on the shape of the coil
current and that the coil currents of PM slip couplers cannot
necessarily be considered sinusoidal. Furthermore, it is shown
by theory and proved by the proposed S-FE calculation method
that the zero-sequence and 5th harmonic induced currents
contribute to the torque developed of the slip coupler.

With the zero-sequence circuit at three-times slip frequency
and the 5th harmonic circuit at five-times the slip frequency,
their respective reactances relative to the coil resistance
quickly increases with slip frequency. Hence, the relatively
largest effect the zero-sequence and 5th harmonic induced
currents have on the performance of the coupler is at low
loads.
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