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ABSTRACT This paper presents an analytical method for modeling the no-load air gap flux density of a
surface-mounted and a consequent-pole linear Vernier hybrid machine (LVHM). The approach is based on
simple magneto-motive force (MMF) and permeance functions to account for the doubly-slotted air gap
of the LVHM. These models are used to determine the flux linkage, induced electromotive force (EMF)
and average thrust force of each machine. The accuracy of the two analytical models is validated by
comparison with 2D finite element method (FEM) solutions. Based on the analytical models, it is found
that the working harmonics of both surface-mounted and consequent-pole LVHMs are essentially the same.
However, the magnitudes of these working harmonics in the consequent-pole LVHM are invariably greater
than those of surface-mounted LVHM. Further, using the analytical model, the contribution to the thrust force
of the machine by each individual working harmonic can be shown clearly, and is used to explain why the
consequent-pole LVHM has improved performance despite using only 50% of the permanent magnet (PM)
material compared to the surface-mounted LVHM.

INDEX TERMS Air gap permeance, analytical method, consequent-pole, flux modulation, magneto-motive
force, vernier machines.

NOMENCLATURE
B flux density
F magnetomotive force
3 air gap permeance
R reluctance
µ0 permeability of free space
µr relative permeability of PMs
wPM width of PM
hm thickness of PM
SO mover slot opening
lst stack length
lm mover length
g air gap
Zr number of active translator teeth
Zm number of mover teeth
δ, δm, δr function describing additional air gap due to

the slotting effect
a, b fourier coefficients
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h harmonic component
Ns number of series turns per phase

I. INTRODUCTION
The use of linear electrical machines in direct-drive appli-
cations has become increasingly attractive, as they eliminate
the need for intermediate linear-to-rotary conversion systems.
This is especially true for applications in which a slow linear
motion is used to convert mechanical energy into electrical
energy, such as wave energy generators and energy storage
applications.

Although there are a number of electrical machine tech-
nologies, the variable reluctance permanent magnet (PM)
machine technologies are particularly well-suited for these
low-velocity and high-force direct-drive applications. These
machines operate according to the flux modulation principle,
where the PM field magneto-motive force (MMF) is modu-
lated by a varying air gap permeance. A common problem
for these machines, however, is the large leakage flux com-
ponent, which causes a reduction in the main flux and an
inherently low power factor [1], [2].
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To improve magnet utilization and machine performance,
the consequent pole (CP) technique, in which either the north
or south pole magnets are replaced by soft ferromagnetic
poles, can be used [1], [3], [4]. The CP technique has been
studied in the literature for Vernier machines [1], [5]–[9]
and flux-reversal machines (FRM) [2]–[4], [10]–[12]. While
most of the research has focused on the working principle
and optimal design solutions of CP machines, some research
work has attempted to explain the potential advantages of the
CP structure. In [4], a comparison of the pole leakage flux
between a conventional and CP FRM based on a simplified
magnetic circuit is used to explain the reduced leakage flux
in, and thus improved performance of, the CP machine. More
recently, the analytical model of the air gap flux density of
a CP FRM was used to demonstrate how the asymmetric air
gap field distribution of the CP machine leads to better torque
production [2].

A. THE LINEAR VERNIER HYBRID MACHINE
The linear Vernier hybrid machine (LVHM) is a special
type of variable reluctance machine, first introduced in [13]
as a machine that possesses the high specific torque of a
transverse-flux machine along with the simple construction
of a flux-reversal machine. Further development of the tech-
nology for wave energy generator applications can be found
in [1], [8], [14].

The surface-mounted (SM) and CP LVHMs considered
in this paper are shown in Fig. 1. Both LVHMs consist of
a mover and a translator. The mover carries a three-phase
winding and PMs, while the translator is a passive and toothed
structure. The only difference between the SM and CP
LVHMs is in the PM arrangement, where all the south-pole
magnets of the SM LVHM are replaced by ferromagnetic
poles in the CP LVHM. Thus, the CP LVHM uses 50% less
PMs than the SM LVHM.

Both machines operate on the principle of fluxmodulation,
often referred to as the magnetic gearing principle, where the
magnets create amulti-poleMMF in the air gap, which is then
modulated by the varying permeance of the slotted translator.
As multiple PMs link a single armature coil, the rate of
change of flux is relatively high when compared with the
mechanical movement speed, and the resulting induced EMF
has an elevated frequency and magnitude.

A few analytical models have been proposed for SM
Vernier hybrid machines (VHMs), although they are mostly
for the rotary VHM. In [13], the shear stress equation
of a rotary VHM was derived using the Lorenz force
approach. In [15], an analytical model of the rotary VHM is
presented based on a set of compact vector-matrix expres-
sions, which was used to generate the co-energy map of
the machine for analysing the VHM and developing a suit-
able machine control. A sub-domain model of the rotary
VHM was developed in [16] to determine the no-load
and on-load air gap flux densities and analyse the perfor-
mance characteristics of the machine. However, there is little

FIGURE 1. The linear Vernier hybrid machines, (a) SM LVHM and (b) CP
LVHM, and (c) a closer image of the air gap area of the SM and CP LVHM,
with some dimensions.

work on the analytical modeling of the CP LVHM in the
literature.

The CP LVHM, described in [1], uses only half the amount
of the PM material but shows better overall performance
than the SM LVHM, with an improved thrust force and
power factor and reduced cogging/ripple forces [1], [14].
Similar to [4], a magnetic equivalent circuit (MEC) repre-
senting the PM-to-consequent-pole flux pattern is used to
explain the reduction in flux leakage and associated perfor-
mance improvement in [1]. Generally, these over-simplified
models are unsuitable for more in-depth analysis of the
air gap field distribution and force-producing mechanisms
of LVHMs.

In this paper, the analytical models of the air gap flux
density for both SM and CP LVHMs are developed based
on MMF-permeance theory. The emphasis is placed on mak-
ing these analytical models more coherent, which allows
a clear explanation of the force-production mechanisms
and a direct performance comparison between the SM and
CP LVHMs.

The remainder of the paper is organized as follows: In
Section II, the development of two analytical models is
described, and these are used to analyse the air gap field
distribution and to identify the contributing field harmonics of
the SM and CP LVHMs, respectively. In Section III, the ana-
lytical models are used to predict the flux linkage and induced
EMF and the average electromagnetic thrust forces of both
the SM and CP LVHMs, which are validated by comparing
with the FEM results. Relevant conclusions are drawn in
Section IV.
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TABLE 1. SM and CP LVHM machine dimensions.

II. ANALYTICAL MODELING
The air gap flux density of both machines is modelled
based on MMF-permeance theory, according to which the
multi-pole MMF generated by the PMs is modulated by the
slotted air gap permeance, as given by (1).

B(x, t) = µ0F(x)3(x, t) (1)

In (1), B(x, t) is the air gap flux density, and F(x)
and 3(x, t) are the air gap MMF and permeance,
respectively.

The MMF waveform is approximated as a simple square
wave function, while the variance of the air gap perme-
ance due to the mover and translator slotting is modelled
using a permeance function based on the mean flux path
under the slot opening [17]. To simplify the problem, mag-
netic saturation and end effects are not considered, and the
CP and translator teeth are not tapered. For the sake of
clarity and completeness, the analytical modeling of the
SM and CP machines is treated separately, and Table 1
provides some key dimensions and parameters of both
machines.

A. SURFACE-MOUNTED LVHM
According to (1), the air gap field distribution of the SM
LVHM can be given as

BSM (x, t) = µ0FSM (x)3SM (x, t), (2)

where BSM (x, t) is the air gap flux density, FSM (x) is the air
gap MMF and 3SM (x, t) is the air gap permeance.

1) MAGNETO-MOTIVE FORCE
Fig. 2 shows the air gap MMF waveform of the SM LHVM,
FSM (x), which is defined as a function by parts over [0, Xs],

FIGURE 2. The MMF waveform of the SM LVHM.

where Xs is the mover pole pitch, given as:

FSM (x) =



0; 0 ≤ x <
SO
2

Fm;
SO
2
≤ x <

SO
2
+ wPM

−Fm;
SO
2
+ wPM ≤ x <

SO
2
+ 2wPM

Fm;
SO
2
+ 2wPM ≤ x <

SO
2
+ 3wPM

−Fm;
SO
2
+ 3wPM ≤ x <

SO
2
+ 4wPM

0;
SO
2
+ 4wPM ≤ x < Xs

(3)

Here, Fm is the magnitude of the PM MMF, SO is
the mover slot opening, wPM is the magnet width and
Xs = SO + 4wPM . Fm is given as Brhm

µ0µr
, with hm being the

PM thickness and Br the magnet remanence.
FSM (x) can be represented as a Fourier series, which yields

FSM (x) =
∞∑
i=1

bsi sin(ωix), (4)

with bsi being

bsi =
2Fm

iπ

[
cos (ωik1)− 2 cos (ωi(k1 + k2))+ (−1)i

]
,

(5)

and k1 = SO
2 , k2 = wPM , ωi = iZm 2π

lm
, with the superscript

s indicating that it is a variable related to the SM LVHM,
Zm being the number of mover teeth and lm being the mover
length.

2) AIR GAP PERMEANCE
Due to the doubly-slotted nature of the SM LVHM, the air
gap permeance function contains three components, as shown
in (6).

3SM (x, t) =
1

g′ + δm(x)+ δr (x, t)
(6)

Here, g′ is the effective air gap, given as g′= g+ hm
µr
, with g

being the mechanical clearance, and δm(x) and δr (x, t) are the
additional air gaps due to the mover slotting and the translator
slotting, respectively.
δm and δr can be described using a general slotting function

based on the ideal flux path under an infinitely deep slot open-
ing [17]. This ideal slot is shown in Fig. 3 (a), with βz being
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FIGURE 3. Illustrations of (a) the ideal slot and flux path used for
calculating δ, and (b) the additional air gap due to translator slotting over
a translator tooth pitch.

the slot opening, z being the pole/tooth pitch and T1, T2 being
the ideal flux paths. For δm(x), βz = SO and z = Xs, and for
δr (x, t), βz = wPM and z = 2wPM , as illustrated in Fig. 1 (c).
Assuming quarter-circle flux lines, the arc lengths can be
given as: T1 = π

2 x and T2 =
π
2 (βz− x).

The general slotting function is equal to the equivalent
length of the idealised flux lines, i.e. T1||T2 in Fig. 3, and
is given as

δ(x) =
π

2
(
βz x − x2

βz
). (7)

Fig. 3 (b) is the graphic representation of (7) as it applies
to a translator tooth pitch. From Fig. 1 (c) and the function
definition of FSM (x) (Fig. 2), it can be noted that the mover
slotting only occurs where FSM (x) = 0, and thus 3SM (x, t)
can be simplified by ignoring δm(x).
The Fourier series equivalent of 3SM (x, t) can then be

expressed as

3SM (x, t) =
as0
2
+

∞∑
j=1

asj cos
(
ωj(x +

k1
2
+ vt)

)
, (8)

with ωj = jZr 2πlm , Zr being the number of active translator
teeth and v being the mover velocity. Here, as0 is

as0 =
1
g′
+

2
d1

(
ln
(
d2
d3

)
− ln

(
(d3)2

8k2πg′

))
, (9)

with d1 =
√
(πk2)2 + 8k2πg′, d2 = d1 + πk2 and

d3 = d1 − πk2; asj is given by

asj =
−2
g′jπ

sin
(
jπ
2

)
+

∫ k2
2

−
k2
2

cos
(
ωjx

)
g′ + α(x − k2

2 )(x +
k2
2 )
dx, (10)

with α = − π
2k2

.

3) AIR GAP FLUX DENSITY
Substituting (4) and (8) into (2), and keeping inmind that only
the fundamental harmonic of3SM contributes to the induced

EMF and the force production, i.e. j = 1 in (8), the SM
LVHM’s no-load air gap flux density can be written as

BSM (x, t) = µ0FSM (x)3SM (x, vt)

= µ0

∞∑
i=1

[
as0b

s
i

2
sin(χ1

i (x))

+
as1b

s
i

2
sin(χ1

i (x)− ϑ1(x, t))

+
as1b

s
i

2
sin(χ1

i (x)+ ϑ1(x, t))], (11)

where χ1
i (x) = ωix and ϑ1(x, t) = ω1(x +

k1
2 + vt).

The specific harmonic components of the SM LVHM can
be found by expanding each sine term. For example, χ1

i (x)
- ϑ1(x, t) can be expressed as below.

χ1
i (x)− ϑ1(x, t) = ωix − ω1(x +

k1
2
+ vt)

= (iZm − Zr )
2π
lm
x

−Zr
2π
lm

(
k1
2
+ vt) (12)

Following a similar process, three main harmonic compo-
nents can be identified from (11), viz.

hs1 = |iZm| (13)

hs2 = |iZm − Zr | (14)

hs3 = |iZm + Zr | (15)

A comparison of the FEM and analytically calculated air
gap flux densities is shown in Fig. 4, with the analytically
derived flux density agreeing well with the result obtained
from 2D FEM.

B. CONSEQUENT-POLE LINEAR VERNIER HYBRID
MACHINE
Similar to the SM LVHM, the no-load air gap flux density of
the CP LVHM can be given by

BCP(x, t) = µ0FCP(x)3CP(x, t). (16)

1) MAGNETO-MOTIVE FORCE
The MMF distribution created by the consequent-pole struc-
ture can be defined as

FCP(x) =



0; 0 ≤ x <
SO
2

F ′m;
SO
2
≤ x <

SO
2
+ wPM

−Ft ;
SO
2
+ wPM ≤ x <

SO
2
+ 2wPM

F ′m;
SO
2
+ 2wPM ≤ x <

SO
2
+ 3wPM

−Ft ;
SO
2
+ 3wPM ≤ x <

SO
2
+ 4wPM

0;
SO
2
+ 4wPM ≤ x < Xs

(17)
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FIGURE 4. Comparison of the FEM and analytical prediction of (a) the
no-load air gap flux density, and (b) the harmonic spectra of the no-load
air gap flux density of the SM LVHM.

FIGURE 5. A simple magnetic circuit of the consequent-pole structure
with a slotless translator and air gap g.

In the above equation, F ′m and Ft are the adjusted mag-
nitudes of the air gap MMF underneath the PM and the
consequent-pole, respectively. The values can be determined
using the simple magnetic circuit in Fig. 5, where F = Brhm

µrµ0
,

Rmr is the magnet reluctance andRg is the air gap reluctance.
From this circuit, the flux, φm, can be calculated as

φm =
F

Rmr + 2Rg
, (18)

with

Rmr =
hm

µ0µrwPM lst
, (19)

Rg =
g

µ0wPM lst
, (20)

with lst being the machine stack length and g the air gap.
Using equations (18) to (20), a simple estimate for F ′m and
Ft can be given as

F ′m = φm
(
Rmr +Rg

)
, (21)

Ft = φmRg. (22)

The air gapMMF of the CP LVHM, shown in Fig. 6, is thus
asymmetrical.

FIGURE 6. The MMF waveform of the CP LVHM.

2) AIR GAP PERMEANCE
The CP LVHM air gap permeance function, 3CP(x, t),
is defined as

3CP(x, t) =
1

δCP(x)+ δr (x, t)
, (23)

where δCP(x) replaces g′ from 3SM (x, t) in (6) and is the
slotting effect due to the consequent-poles, defined as in (24).

δCP(x) =



g; 0 ≤ x <
SO
2

g′;
SO
2
≤ x <

SO
2
+ wPM

g;
SO
2
+ wPM ≤ x <

SO
2
+ 2wPM

g′;
SO
2
+ 2wPM ≤ x <

SO
2
+ 3wPM

g;
SO
2
+ 3wPM ≤ x <

SO
2
+ 4wPM

g;
SO
2
+ 4wPM ≤ x < Xs

(24)

3) SIMPLIFIED APPROACH USING SUPERPOSITION
It is clear from equations (17) and (23) that the functions
describing the air gap flux density of the CP LVHM are more
complex due to the soft ferromagnetic pole. To alleviate the
complexity, the analytical model is divided into two separate
solutions, as explained below.

Using the principle of superposition, the MMF function
can be expressed as:

FCP(x) = F1
CP(x)+ F2

CP(x), (25)

with F1
CP and F2

CP representing the MMF underneath the
magnet and the consequent-pole, respectively. Their function
definitions are given below.

F1
CP(x) =



0; 0 ≤ x <
SO
2

F ′m;
SO
2
≤ x <

SO
2
+ wPM

0;
SO
2
+ wPM ≤ x <

SO
2
+ 2wPM

F ′m;
SO
2
+ 2wPM ≤ x <

SO
2
+ 3wPM

0;
SO
2
+ 3wPM ≤ x <

SO
2
+ 4wPM

0;
SO
2
+ 4wPM ≤ x < Xs

(26)
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F2
CP(x) =



0; 0 ≤ x <
SO
2

0;
SO
2
≤ x <

SO
2
+ wPM

−Ft ;
SO
2
+ wPM ≤ x <

SO
2
+ 2wPM

0;
SO
2
+ 2wPM ≤ x <

SO
2
+ 3wPM

−Ft ;
SO
2
+ 3wPM ≤ x <

SO
2
+ 4wPM

0;
SO
2
+ 4wPM ≤ x < Xs

(27)

The Fourier series equivalents are

F1
CP(x) =

ac10
2
+

∞∑
i=1

ac1i cos
(
ωi

(
x +

3k1
8

))
, (28)

F2
CP(x) =

ac10
2
+

∞∑
i=1

ac2i cos
(
ωi

(
x −

3k1
8

))
, (29)

with the superscript c indicating that it is a variable related to
the CP LVHM. The relevant coefficients are given as:

ac10 =
6
7
F ′m, (30)

ac1i =
2F ′m
iπ

(
sin(iπ

11
14

)− sin(iπ
5
14

)
)
, (31)

ac20 =
6
7
Ft , (32)

ac2i =
2Ft

iπ

(
sin(iπ

11
14

)− sin(iπ
5
14

)
)
. (33)

From (24) and the function definitions of F1
CP and F

2
CP, it is

evident that δCP(x)= g′ where F1
CP 6= 0, and that δCP(x)= g

where F2
CP 6= 0.

Similarly, 3CP can also be split into 31
CP(x, t) and

32
CP(x, t), as

31
CP(x, t) =

1
g′ + δr (x, t)

, (34)

32
CP(x, t) =

1
g+ δr (x, t)

. (35)

The Fourier series equivalents are given by

31
CP(x, t) = 3SM (x, t), (36)

32
CP(x, t) =

ac30
2

+

∞∑
j=1

acj cos
[
ωj

(
x +

k1
2
+ vt

)]
. (37)

The coefficients ac30 and acj are the same as the coefficients
for 3SM , only with g′ being replaced by g.

4) AIR GAP FLUX DENSITY
BCP(x, t) can thus be written as

BCP(x, t) = µ0

[
F1
CP(x)3

1
CP(x, t)

+F2
CP(x)3

2
CP(x, t)

]
, (38)

which can then be expanded as

BCP(x, t) = µ0

[
F1
CP(x)3

1
CP(x, t)+ F2

CP(x)3
2
CP(x, t)

]
= µ0

[
ac10 a

s
0

4
+
ac20 a

c3
0

4

+

(
ac10 a

s
1

2
+
ac20 a

c
1

2

)
cos (ϑ1(x, t))

+

∞∑
i=1

ac1i a
s
0

2
cos(χ2

i (x))+
ac2i a

c3
0

2
cos(χ3

i (x))

+

∞∑
i=1

ac1i a
s
1

2
cos(χ2

i (x)− ϑ1(x, t))

+
ac2i a

s
1

2
cos(χ3

i (x)− ϑ1(x, t))

+

∞∑
i=1

ac1i a
c
1

2
cos(χ2

i (x)+ ϑ1(x, t))

+
ac2i a

c
1

2
cos(χ3

i (x)+ ϑ1(x, t))
]
, (39)

where χ2
i (x) = ωi(x +

3k1
8 ) and χ3

i (x) = ωi(x −
3k1
8 ).

With this formulation of the air gap flux density, and
following the same process as detailed for the SM LVHM,
it can be found that the CP LVHM has the following field
harmonics in the air gap:

hc1 = |iZm| (40)

hc2 = |Zr | (41)

hc3 = |iZm − Zr | (42)

hc4 = |iZm + Zr | (43)

A comparison of the FEM and analytical air gap flux den-
sities and harmonic spectra are shown in Fig. 7, illustrating
good agreement between the two.

III. COMPARISON OF THE SM AND CP LVHM
Using the analytical models derived in the previous section,
the flux linkage, induced EMF and thrust force can be deter-
mined for both LVHMs. The phase flux linkage can be deter-
mined directly from the air gap flux density by

λph(t) = (Nskdkp)glst

∫
S
B(x, t)dx, (44)

where the set S indicates integration over a mover pole pitch,
Ns is the number of turns in series per phase, kd is the
distribution factor and kd the coil-span factor. The no-load
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FIGURE 7. Comparison of the FEM and analytical prediction of the (a) air
gap flux density and (b) harmonic spectra of the CP LVHM.

FIGURE 8. Comparison of the FEM and analytically predicted phase flux
linkage for the (a) SM and (b) CP LVHM, and the induced EMF for the
(c) SM and (d) CP LVHM.

induced EMF is given as

eph(t) = −
d
dt
λph(t). (45)

The comparison between the FEM-derived and analytical
prediction for the flux linkage and no-load EMF of both
machines is shown in Fig. 8. The finite element models
showing the flux distribution of both the SM and CP LHVMs
are given in Fig. 9. A prediction of the thrust force can then
be made using the analytical model as

fan(t) =
∑

i=A,B,C

eiph(t)ii(t), (46)

with iiph(t) being the phase currents. The average thrust force
from the FEM results, FFEM , and the analytically derived
average thrust force, Fan, are compared in Table 2.
It is evident from Fig. 8 and Table 2 that the results of

the analytical models correlate well with those of FEM.

FIGURE 9. The finite element models showing flux distribution of the
(a) SM LVHM and (b) CP LVHM.

TABLE 2. Force comparison.

The model of the SM LVHM closely matches the FEM in
flux linkage, induced EMF and average thrust force. The CP
LVHM model does not have the same accuracy as the SM
LVHM, especially when comparing the induced EMF with
FEM. This is likely due to the presence of other permeance
harmonics that are not taken into account in the analytical
model. However, these harmonics make practically no con-
tribution to the force production, as the average thrust force
obtained from the analytical model and from 2D FEM are
very similar.

The CP LVHM clearly has a higher flux linkage and
induced EMF magnitude, leading to a 25% increase in the
average thrust force. Using (11), (39) and (44) to (46),
the effect of each harmonic on the force production of the
two machines can be determined. Table 3 provides this com-
parison, with hs1, h

c
1 and hc2 omitted, as they are stationary

harmonics and do not contribute to the force production [2].
From these results it is clear that the 1st , 2nd and 4th

harmonics contribute to the force production, with the 1st har-
monic being the most important. It is interesting to note that,
for both LHVMs, the iZm−Zr component, i.e. the lower-order
harmonics, is the main contributor to their force production,
with the iZm+Zr component, i.e. the higher-order harmonics,
constituting a ripple flux component. Table 4 summarizes the
percentage contribution of the main harmonics in the SM and
CP LVHMs to the average thrust force.

From Table 3 it is evident that both LVHMs have exactly
the same order field harmonics that contribute to the force
production, and Table 4 shows that the different harmonics
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TABLE 3. The order and magnitude of the harmonic spectra for the SM
LVHM and CP LVHM.

TABLE 4. The percentage contribution of the main harmonics in the SM
LVHM and CP LVHM to the average thrust force.

have a similar percentage contribution to the force produc-
tion. The improved performance of the CP LVHM can be
attributed to the higher magnitudes of the three working
harmonics. This can be explained in part by studying (11)
and (39), specifically the lower-order harmonics of the SM
and CP LVHMs.

When comparing the lower order harmonics, the most
obvious difference comes from the terms determining the
magnitude of these components. For the SM LVHM, the term
is (bsi )

as1
2 , and for the CP LVHM it is (ac1i + ac2i )

as1
2 . The

air gap flux density waveforms of both LHVMs due to the
main working harmonic components are compared in Fig. 10,
where the CP LVHM exhibits a larger flux density despite
having less overall air gap flux density, as seen when com-
paring Fig. 4 (a) and Fig. 7 (a).
As the lower-order harmonics of both machines are a

result of the interaction between the respective air gap MMF
waveforms and the same permeance function, the main dif-
ference comes from the different MMF waveforms of the SM
and CP LVHMs. While F ′m is about 17% smaller than Fm,
the difference between Ft and Fm is much greater, with Ft
being 83% smaller thanFm. The CP LVHM demonstrates an
increased average thrust force despite this decrease in air gap
MMF, which is somewhat counter-intuitive. This indicates
that the magnet pole being replaced with the consequent-
pole, in this case the south pole magnet, does not contribute

FIGURE 10. The air gap flux density at t = 0 due to the main working
harmonics.

meaningfully towards the force generation, and likely only
produces a leakage component, degrading the performance
of the SM LVHM. This reduction in leakage flux is also
evident when comparing the flux between the two PMs in the
SM LVHM and between the PM and CP in the CP LVHM,
in Fig. 9 (a) and (b), respectively.

Another interesting observation is that the percentage force
contribution of higher-order harmonics, i.e. hs3 and h

c
4, is sim-

ilar between the SM and CP LHVMs. Since the higher-order
field harmonics are mainly the source of pulsating flux and
force, this indicates that the cogging and ripple forces of the
CP LHVM would be greater than those of the SM LHVM.
As discussed in the literature [7], [9], [18], [19], some tech-
niques such as tapering the consequent-poles and translator
teeth, are normally applied to reduce the flux leakage, miti-
gate the cogging/ripple forces, and provide a more sinusoidal
induced EMF for CP LVHMs.

IV. CONCLUSION
In this paper, the analytical models for the no-load air gap
flux density of the SM and CP LVHMswere derived based on
MMF-permeance theory. The analytical models were used to
determine the phase flux linkage, induced EMF and average
thrust force of the machines.

Detailed comparisons with 2D FEM show that the devel-
oped analytical models accurately predict the no-load air gap
field distributions of both machines. Their validity is further
proved by comparing the determined phase flux linkages,
induced EMFs and thrust forces with 2D FEM simulations.

By using the principle of superposition for the air gap
MMF, the analytical modeling of the CP LVHM is not only
simplified, but also forms a coherent set of air gap flux density
equations that are easily comparable with the SM LVHM.
A clear advantage of the developed analytical models there-
fore is that it enables a direct comparison of the individual
harmonics and their contribution to the average thrust force.

In comparison with the SM LVHMs, the flux density equa-
tions clearly show that the consequent-pole technique does
not introduce new working harmonics in the CP LVHMs, but
only increases the magnitudes of these working harmonics.
The improvement of the working harmonics in the CP LHVM
leads to an increase of approximately 25% in the magnitude
of the flux linkage, induced EMF and thrust force when com-
pared with the SM LVHM. Using these working harmonics,
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this paper provides a clearer explanation of and greater insight
into the performance improvement of the CP LVHMs.
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