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Weighted Factor Multiobjective Design Optimization
of a Reluctance Synchronous Machine
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Abstract—The relationship between the well-known competi-
tive torque density and less-competitive power factor of reluc-
tance synchronous machines (RSMs) is investigated in this study.
The investigation was carried out by implementing a complete
machine model in the optimization, with varying machine-pole
number and flux-barrier number combinations. Furthermore, the
study consists of a multiobjective design optimization implement-
ing a weighted-factor optimization technique. Determination of
the weighting of this specific parameter relationship enables the
designer to select an optimum multiobjective relationship during
optimization. A specific machine was selected for analysis, then
analyzed and manufactured for validation of simulation results.

Index Terms—Asymmetric pole structure, finite-element
(FE) analysis, flux barrier, multiobjective optimization, optimiza-
tion algorithms, synchronous reluctance machine, weighted factor
optimization.

I. INTRODUCTION

D UE to the increasing interest in more efficient and cost-
effective drives in the electrical machine market, research

into reluctance synchronous machines (RSMs) has intensi-
fied. This is due to the well-known high efficiency of RSMs,
with a much simpler rotor topology compared to induction
and permanent-magnet machines. The significant drawback of
RSMs is, however, its low competitive power factor, with an
increase in required inverter power rating and, hence, a higher
machine inverter-drive package cost.

A critical part in the design of an RSM is the shaping of
the flux barriers. This topic has attracted much attention in lit-
erature as illustrated in a few recent example studies [1]–[7].
The focus of the majority of the studies that have been con-
ducted is on the maximization of torque within a constrained
volume [8], the minimization of torque ripple [2], [9], [10], or
a combination of the two [1]. However, there is limited litera-
ture describing investigations into the effect that variation of the
number of flux barriers and the flux-barrier shape has on other
machine parameters, such as the power factor (PF ).

In order to study this inherent disadvantage of RSMs, this
paper describes an investigation into the relationship between
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Fig. 1. Illustration of the pareto front construction by implementing the
scalarization method to solve multiobjective optimization problems.

PF and the relatively competitive torque density commonly
achieved in RSMs. The method of analysis implements a
numeric design optimization process to investigate the effects
that the flux-barrier number and shape variation, machine-pole
number, and power-level variation have on the average torque
(TA) and PF relationship. This relationship is determined by
implementing a weighted-sum (or scalarization) method that
solves a multiple-objective optimization problem by combin-
ing the respective objectives into one single-objective function.
With the objective functions

y = γ1f1(x) + γ2f2(x) (1)

as presented in Fig. 1, represented by f1(x) as TA and f2(x) as
PF . The objective function is determined by shifting the respec-
tive weighted factors from TA to PF , with the weighted factors
represented by γ1 and γ2, respectively, with

γ2 = 1− γ1 (2)

and with

0 � γ1 � 1 (3)

and

0 � γ2 � 1. (4)

The model for flux-barrier creation implemented in the
design optimization process is reported in literature [11]. In this
paper, an alternative flux-barrier-creation technique is described
that implements an asymmetric pole structure in conjunction
with an extensively variable flux-barrier topology is described.
An illustration of this asymmetric structure is presented in
Fig. 2(c). The motivation for implementing this asymmet-
ric structure is twofold. First, a 50% (on average) reduction
in torque ripple can be achieved with this asymmetric pole
topology as compared to a symmetric topology, as described in
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Fig. 2. Four-pole asymmetric structure illustrating the different pole topolo-
gies [11]. (a) Asymmetric rotor structure about the d-axis with symmetric
q-axis. (b) Asymmetric rotor structure about the q-axis with symmetric d-axis.
(c) Asymmetric rotor structure about the q- and d-axes.

[11], with similar results reported in [2]. Second, as one of the
aims of this study was to investigate the effects across a vary-
ing machine-pole range, a flux-barrier topology that can easily
adapt to a large range of machine-pole numbers is required.

The main advantage that the asymmetric topology has over
the alternative conventionally implemented asymmetric topol-
ogy [Fig. 2(a) and (b)] is that only one machine pole needs to
be modeled in the finite-element (FE) package, compared to the
two poles required for the alternative asymmetric pole topol-
ogy. This reduction in the required FE model size subsequently
reduces the optimization time by reducing the respective simu-
lation time per optimizer function call.

The main disadvantage of this topology, however, is
its potential performance parameter variation under varying
machine-operation modes and the direction of rotation. In this
study, a unidirectional mode of operation that is applicable to,
e.g., generators, pumps, and conveyor drives is assumed.

This paper consists of seven sections. In Section II, the
machine model implemented in the design process is presented.
Section III describes the performance parameter calculations.
In Section IV, the optimization process and strategies imple-
mented are presented. The weighted-factor optimization study
is described in Section V. For the purpose of validation, a
machine that emanated from this study’s results was selected
for manufacture, and these results are discussed in Section VI.
Finally, the conclusion is presented in Section VII.

II. MACHINE MODEL

The implemented flux barrier, presented in [11], is shown in
Fig. 3(a) and (b). Eight variables were implemented to create
one flux barrier, given by

XR =
[
αL αR βL βR R P1sp P3sp P5sp

]T
(5)

with the web width of the flux barriers chosen as a fixed 0.5 mm
during the optimization. This minimum width is selected based
on manufacturing constraints, where for punching of the lami-
nation, the web width must not be less than the thickness of the
lamination.

In addition, in order to accurately model the weighted values
between PF and TA, the stator design is also optimized. The
stator-slot design points are illustrated in Figs. 4 and 5, with
the point variables tabulated in Table I. The stator construction

Fig. 3. Asymmetric flux-barrier model presented in [11].

Fig. 4. Main stator-slot design points.

Fig. 5. Illustration of stator-slot tip and base variable points. (a) Slot tip. (b) Slot
base.

consists of three bézier cubic spline fittings, the first of which
is from point P1 to P2, the second from P2 to P3, and the final
from point P4 to P5. A straight line connects points P3 and P4.

Furthermore, the spline departure and arrival points are fixed.
They are represented by points P11 and P12 for points P1 and
P2, points P22 and P23 for points P2 and P3, and finally, points
P44 and P45 for points P4 and P5, as shown in Fig. 5(a) and (b).
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TABLE I
STATOR-SLOT VARIABLES

GH : air-gap height; θ SL: slot opening; β = 2π
Sp

; Sp: stator slots per pole;

R GAP: air-gap radius; R SSI: slot opening radius; R SSO: slot base radius; �:
stator variables.

TABLE II
SPECIFICATIONS AND SOME RATED DATA OF THE RSMS STUDIED

P : number of poles; Sp: stator slots per pole; B: number of flux barriers; ROI :
rotor inside radius; STO : stator outside radius; LS : stack length; h: air-gap
height; J : current density = 6.4 A/ mm2.

By varying the radius of points P3 and P4, the optimizer has
the capability of varying the tooth width and shape of the stator-
slot base. The complete set of stator variables consists of seven
variables, i.e., six slot dimensions as given in Table I and the
current angle θ, as given by

XS =
[
θ R GAP R SSI RP3

RP4
R SSO α34

]T
. (6)

The machine model was optimized by implementing a con-
strained model volume that consists of a fixed-stator outside
diameter, rotor inside diameter, and stack length. These fixed
dimensions were obtained from existing machine frame-size
stack dimensions. The specific machine dimensions imple-
mented, along with the respective flux-barrier number per
machine analyzed, are given in Table II. During the optimiza-
tion process, each model implemented standard overlap, full
pitch windings, with the stator slots per pole also given in
Table II.

III. PARAMETER CALCULATION

The rated current densities implemented in the optimization
are given in Table II. The FE simulation package SEMFEM,
developed as described in [12], was implemented in the opti-
mization study. The advantage of implementing this package is
its script-based user interface, which greatly reduces simulation
time.

The power factor is calculated by the well-known power-
factor equation

PF = cos

(
tan−1σ/ν + ν

σ − 1

)
(7)

Fig. 6. PyOpt optimization flow diagram.

with

σ =
Ld

Lq
(8)

ν =
Iq
Id

(9)

and with

Ld =
λd

Id
(10)

and

Lq =
λq

Iq
. (11)

In (8)–(11), the parameters λq , λd, Iq , and Id are calcu-
lated from FE static simulation steps, with the averages of
the complete simulation set implemented for each respective
variable.

Torque ripple (TR) is calculated by

TR =

[
T(MAX) − T(MIN)

TA

]
∗ 100% (12)

with T MAX and T MIN are the maximum and minimum torque
values of the simulated machine, respectively, and TA is the
average simulation torque, with the FE simulation stepped over
a 60◦ electrical angle.

IV. DESIGN OPTIMIZATION

The optimization flow diagram implemented in the study is
shown in Fig. 6. The package implemented for the optimization
was PyOpt [13], an open-source, Python-based optimization
suite. The advantage of implementing PyOpt lies in its open-
source availability and script-based user interface, which, in
turn, makes optimization flow strategies automatable. This
optimization suite is connected to the FE simulation package
SEMFEM via a Python script.

Due to the large range of available optimizers that PyOpt
provides, an initial algorithm comparison study was conducted
to select an optimum optimizer for the specific model. For
this optimizer study, six algorithms available in PyOpt were
selected as follows:
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Fig. 7. Optimization strategy to evaluate the selected optimizers in PyOpt.

TABLE III
OPTIMIZATION VARIABLES

1) SLSQP—sequential least squares programming;
2) CONMIN—constrained function minimization;
3) SOLVOPT—solver for local optimization problems;
4) KSOPT—Kreisselmeier–Steinhauser optimizer;
5) FILTERSD—generalization of Robinsons method, glob-

alized using a filter and trust region;
6) SDPEN—sequential penalty derivative-free method for

nonlinear constrained optimization.
A detailed description of each algorithm can be found in

[13]. The optimizer comparison strategy consisted of a two-
stage optimization strategy as proposed in [11]. A simplified
version of the strategy is illustrated in Fig. 7. The strategy con-
sisted of an initial TA maximization, step O1, optimizing all the
variables

X1 = [XR XS ]
T (13)

as in Table III, with each optimizer starting with identical initial
values. In this comparison study, only the four-pole, frame-size
90 dimensions (see Table II) were implemented in the opti-
mization strategy. The rotor topology consisted of four-flux
barriers.

The second step, O2, consisted of a TR minimization, imple-
menting the best-performing optimized variables of step O1 as
initial variables. Only the barrier tip variable, X2 in Table III

Fig. 8. Optimization study to compare optimization algorithms for step O1 in
Fig. 7 of frame-size 90 machine.

Fig. 9. Optimization study to compare optimization algorithms for step O2 in
Fig. 7 of frame-size 90 machine.

Fig. 10. Weighted-sum model optimization flow diagram.

[see also Fig. 3(a)], was allowed to vary with

X2 = [αRL]. (14)

The results of this investigation are shown in Figs. 8 and 9. The
gradient step size for each algorithm was determined from itera-
tive identical optimizations implementing the specific optimizer
with a variation in step size. The algorithm-selection criteria
were based on robustness, optimum solution point repeatability,
and a low function-call number for convergence.

Fig. 8 shows that the SDPEN algorithm clearly outperforms
the gradient-based algorithms; a much higher optimum objec-
tive is reached in roughly 600 function calls. This algorithm
was, therefore, selected for step one in the optimization strat-
egy that was implemented in the weighted-factor optimization
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Fig. 11. Multiobjective, weighted-factor optimization results of the 90-frame, four-pole machine. (a) Weighted-factor pareto front. (b) Weighted-factor objective
plot versus PF weight.

Fig. 12. Multiobjective, weighted-factor optimization results of the 132-frame, four-pole machine. (a) Weighted-factor pareto. front. (b) Weighted-factor objective
plot versus PF weight.

study. The results of the second algorithm study are shown
in Fig. 9. This figure shows a more competitive performance
of the algorithms, explained by the large reduction in opti-
mization variables compared to the variable count of step O1.
From these results, two algorithms, SLSQP and SDPEN, show
clear performance advantages over the others, with a more
optimum convergence point achieved in the least amount of
function calls. After a comparison of these two algorithms,
SLSQP was selected for the second TR minimization step in
the optimization strategy.

For each optimization, in order to avoid objective function
contour distortion, each variable was scaled, with the variable
inequality constraint consisting of

0 � G(Xm) � 1 (15)

with m, the specific variable set implemented in the
optimization.

V. WEIGHTED-SUM OPTIMIZATION

A. Weighted-Factor Strategy and Results

After the desired optimizer was selected, the multiobjective
weighted-sum optimization between TA and PF was con-
ducted. The optimization flow diagram is shown in Fig. 10.
To accurately scale the weighted-sum objective, each of the

respective subobjectives was scaled to its per-unit value with

FO(γ1, γ2, X1) = γ1

(
TA(X1)

TA(X1) max

)
+ γ2

(
PF (X1)

PF (X1) max

)

(16)
where TA(X1) max and PF (X1) max are determined, respec-
tively, by maximizing the objective functions

FO(1, 0, X1) = (1)TA(X1) + (0)PF (X1) (17)

and

FO(0, 1, X1) = (0)TA(X1) + (1)PF (X1). (18)

These two initial optimization steps are shown in Fig. 10.
The weighted pareto-front optimization was then completed by
shifting the respective weight from one objective to the other
in 19 iteration steps. This strategy, in turn, was repeated for all
the machines listed in Table II; hence, the flow diagram shown
in Fig. 10 was repeated for each machine pole and flux-barrier
number combination.

The optimization results for the four machine configurations,
implementing the varying flux-barrier numbers, are shown in
Figs. 11–14. The results of each machine consist of the pareto
front for each flux-barrier number and the objective function
curve for each weighted objective optimization. It is clearly
seen, from all the optimized machines, that there is a gradual
increase in the pareto ratio between TA and PF as the flux-
barrier number increases. This increase is initially large from
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Fig. 13. Multiobjective, weighted-factor optimization results of the 132-frame, six-pole machine. (a) Weighted-factor pareto front. (b) Weighted-factor objective
plot versus PF weight.

Fig. 14. Multiobjective, weighted-factor optimization results of the 132-frame, eight-pole machine. (a) Weighted-factor pareto front. (b) Weighted-factor objective
plot versus PF weight.

Fig. 15. Maximized objective function TA(X1) max for all machines listed in
Table II.

one-flux barrier to two, followed by a steady decrease in pareto
ratio as the flux-barrier number increases.

Furthermore, when analyzing the objective curves [see
Figs. 11(b)–14(b)], it is evident that the weighted-sum objective
results are not flux-barrier-number-dependent, with the objec-
tive function results represented by a single curve. Results of
the initial two maximized objective functions TA(X1) max and
PF (X1) max are presented in the bar charts in Figs. 15 and 16.
These figures show the clear increase in TA and PF as the flux-
barrier number increases, with this increasing trend converging
around the four-flux-barrier mark.

To determine a possible global weighted-factor relationship,
the results of each machine topology and flux-barrier number

Fig. 16. Maximized objective function PF (X1) max for all machines listed in
Table II.

combination were normalized by implementing equations

TA(N,X1)R =
TA(X1)N − TA(X1) min

TA(X1) max − TA(X1) min
(19)

and

PF (N,X1)R =
PF (X1)N − PF (X1) min

PF (X1) max − PF (X1) min
(20)

with N , the step in Fig. 10, and R is the calculated “ratio.”
PF (X1) min and TA(X1) min in (19) and (20) are the TA and
PF values, respectively, from the TA(X1) max and PF (X1) max

objective designs.
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Fig. 17. Scaled weighted-factor optimization results of the designs of the
RSMs of Table II. (a) Per-unit pareto front representing the RSMs investigated.
(b) Weighted-factor relationship versus PF weight.

The results of these calculations are shown in Fig. 17(a), i.e.,
with the normalized pareto front according to (19) and (20)
plotted for all the machines and flux-barrier number combina-
tions of Table II. The curve-fit equation for this pareto front
consists of

y =
a√

b2 − x2
+ c (21)

with a = −1.26087, b = 1.17596, c = 2.06220 and with the
variables x and y representing PF and TA, receptively.

This fitted curve illustrates that a power-level, pole, and
flux-barrier-number-independent equation exists, which repre-
sents the per-unit weighted-factor pareto curve of the objective
functions TA(X1) and PF (X1). This curve equation can con-
sequently be implemented to predict weighted-factor machine
optimization performance without having to map the pareto
front, with only the maximized PF (X1) max and TA(X1) max to
be determined.

In order to increase the accuracy of the prediction, the mean
estimated values for each of the respective weights are tabulated
in Table IV. The mean estimates x mean and y mean were calcu-
lated from the optimized results implementing the optimization
weights γ1 and γ2 for all the machine combinations given in
Table II.

The design estimation process implementing Table IV’s
results is presented in the flow diagram in Fig 18. The estima-
tion steps consist of:

1) the initial independent maximization to determine
TA(X1) max en PF (X1) max;

TABLE IV
WEIGHTED-FACTOR MEAN ESTIMATE AND 95% CONFIDENCE INTERVAL

FOR OBJECTIVE FUNCTIONS TA(X1) AND PF (X1)

♠: Equation (21) mean estimate variables and confidence.

Fig. 18. Weighted factor TA and PF estimation step flow diagram.

2) the iterative estimation of TA and PF calculated by
rewriting (19) and (20) to

TA = y mean(TA(X1) max − TA(X1) min) + TA(X1) min

(22)
and

PF = x mean(PF (X1) max − PF (X1) min) + PF (X1) min

(23)
with

xmean = f(γ2) (24)

ymean = f(γ1) (25)

read from Table IV;
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TABLE V
ESTIMATED AND OPTIMIZED RESULTS OF 50 HZ RSMS DESIGNED,

IMPLEMENTING WEIGHTED FACTOR γ1 = 0.30 AND γ2 = 0.70

♠: plotted estimate versus optimized results in Fig. 19; N : machine number
in Fig. 19; B: flux barrier number; P : number of poles; h: air-gap height; J :
current density; MW : machine winding; �: machine volume: (LS = 2.14 m;
STO = 0.565 m; R0I = 0.24 m); ♦: machine volume: (LS = 1.23 m; STO =

0.715 m; R0I = 0.332 m) .

3) if the desired TA and/or PF values are reached, the corre-
lating weighted factors are used in the objective function
(16) to optimize the design of the machine.

This optimization prediction is subject to the following
optimization machine model constraints:

1) ROO � 3
4STO;

2) θP3
� θP1

;
3) ROI is fixed;
4) no center flux-barrier web support;

with ROO, STO, and ROI shown in Fig. 20, and with θP1
and

θP3
shown in Fig. 4 and Table I.

B. Define Possible Optimum

To define an “optimum” weighted relationship between the
two objectives, the respective x- and y-axes results of Fig. 17(a)
area summarized with

S(XW ) =

∑b
1 TA(N,X1)R

b
+

∑b
1 PF (N,X1)R

b
− 1 (26)

with b the number of barrier-number combinations optimized
per machine setup and with the “−1.0” value implemented to
zero the relationship at the TA(X1) max or PF (X1) max point.
This calculated summation is shown in Fig. 17(b). The opti-
mum relationship between TA and PF is also illustrated, with
the optimum point between 0.25 � γ1 � 0.30 and 0.70 � γ2 �
0.75.

C. Verification of Weighted-Factor Pareto

To verify the weighted-factor pareto estimation in Fig. 18,
nine machines were optimized implementing the weighted fac-
tor γ1 = 0.30 and γ2 = 0.70 (x mean = 0.62934 and y mean =

Fig. 19. Pareto plots of optimum designed RSMs 2–10 of Table V compared
to the theoretical estimated pareto plot of RSM 1, with 95% confidence ellipse
shown.

0.79853 from Table IV). The first six machines optimized
included machines in the 100 kNm range, with 8- and 10-pole
configurations and having different chorded, overlap winding
layouts.

The optimum designed RSMs numbered 8 and 9 in Table V
are again small RSMs (90 frame size in Table II), but this time,
with symmetric rotor structures. This was done to include also
a symmetric rotor structures in the verification study.

The final machine consisted of an induction machine stator
retrofit RSM rotor optimization, with a four-flux-barrier rotor
optimized. The frame-size dimensions for this machine closely
correlate the frame-size 90 dimensions in Table II.

The estimated and actual performances of the design-
optimized RSMs are given in Table V, which show, in general,
very good comparison for TA and PF. The estimated and actual
result points of the RSMs are shown in Fig. 19. This good com-
parison shows that the theoretical estimated pareto curve not
only applies to small RSMs with asymmetric rotors but also to:

1) RSMs with symmetric rotors;
2) RSMs in the very high 100 kNm torque range;
3) RSMs with induction machine stators and retrofit RSM

rotors; and
4) RSMs with varying chorded overlap windings.

The deviation from the estimated values obtained for the 100
kNm machines is larger than for the smaller machines. This
larger deviation is attributed to the large increase in model size,
the increase of air-gap height to a more realistic 2.5 mm, and an
increase of the flux-barrier web width to 2.5 mm.

D. Machine Selection and Torque Ripple Reduction

To validate the calculated parameters and investigate the
implementation of a high-pole RSM, the eight-pole, four-flux-
barrier machine implementing the 132 frame in Table II is
selected with weighted factor γ1 = 0.45 and γ2 = 0.55. This
selection was motivated by the desire to investigate RSMs oper-
ating in the medium speed range, with the medium speed range
falling between 320 and 680 r/min [14]. Furthermore, four-flux
barriers were selected after an increase in flux-barrier number
to five and six found no significant increase in the TA–PF rela-
tionships, as seen in Fig. 14(a). The eight-pole, four-flux-barrier
RSM selected is shown in Fig. 20.
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Fig. 20. Pareto curve selected eight-pole, 48-slot RSM with ROO =
65.39 mm, ROI = 20.5 mm, STO = 105 mm, and stack length 0.12 m, with
air-gap length 0.35 mm.

TABLE VI
TORQUE RIPPLE REDUCTION OF THE SELECTED EIGHT-POLE MACHINE

�: maximum point; �: minimum point.

Fig. 21. Average torque, torque ripple, and power factor versus current angle
of the selected eight-pole RSM (performance parameters representing TA and
PF as per unit values).

To reduce the TR of the selected machine to acceptable
levels, the second step of the asymmetric optimization tech-
nique in Fig. 6, step O2, was implemented. This step includes
the minimization of the objective function TR(X2) by only
implementing the asymmetric flux-barrier tip angles. This min-
imization was done at two fixed current-angle points, 62◦ and
70◦, respectively, with the designer free to select either the peak
TA or PF operating point for the minimization.

Table VI and Fig. 21 show the minimization results, with the
initial results of (16) compared to the two possible current-angle
minimization points. For this specific machine, the current
angle of 62◦ was selected for the desired maximum-torque

TABLE VII
STRESS AND DEFORMATION ANALYSIS DONE IN JMAG AND ALGOR

MULTIPHYSICS ON THE SELECTED EIGHT-POLE RSM

Lamination M470-50A yield strength: 300 MPa; ♣: lamination temperature;
�: speed = 6 × 450 r/min = 2700 r/min; ♠: electromagnetic forces; �: Von
Mises peak stress; ∗: maximum point deformation.

Fig. 22. Stress and deformation analysis, and comparison between structural
analysis done in JMag and Algor Multiphysics on the selected eight-pole RSM
rotor.

operating point. Table VI clearly shows that there is small, or
no, reduction in TA during the TR(X2) minimization, with a
>50% reduction in torque ripple to an acceptable 5.1% at a 63◦

current angle.

VI. MACHINE MANUFACTURING AND TESTING

Prior to the final machine manufacturing, an extensive struc-
tural analysis was conducted on the rotor lamination under rated
conditions to determine the structural rigidity. The structural
analysis is done using JMAG and Algor simulation packages.
Due to the electromechanical simulation limitations of Algor,
the initial simulation verification consisted only of a centrifugal
force analysis at six times the rated speed (2700 r/min), with
the lamination at 20 ◦ C and 150 ◦ C temperatures. The struc-
tural analysis in JMag was conducted on a 2-D model, whereas
a 3-D model was implemented in Algor. This explains the
more realistic higher stress and deformations results obtained
in Table VII.

After this initial model verification, the simulation was
repeated in JMag with inclusion of the electromechanical forces
at rated conditions. The structural analysis results are presented
in Table VII and Fig. 22. The results in Table VII clearly show
that the forces at the extreme conditions are well within the
structural limit of the rotor lamination material.

The manufactured rotor and stator are shown in Fig. 23. The
machine manufactured RSM had an important difference to
the simulated machine, i.e., the stack length of 110 mm was
increased to 120 mm. The reason for this increase in stack
length was that the machine manufacturer was able to utilize
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Fig. 23. Rotor and stator manufacturing with the (a) rotor lamination, (b) rotor
assembly, (c) completed rotor assembly with end caps, and (d) completed
machine assembly.

Fig. 24. Measured and simulated power factor versus current angle at 450 r/min
at 12.0 A rms with LS = 120 mm.

Fig. 25. Measured and simulated average torque versus current angle at 100
r/min at 12.0 A rms with LS = 120 mm.

the machine frame-size volume more effectively. The increase
in stack length, however, increased the simulated torque of 81.6
Nm in Table VI to 88.5 Nm at a current angle of 63◦.

The simulated and measured power factor of the manufac-
tured machine is shown in Fig 24. At peak power factor, the
simulated result of 0.709 closely correlates with the measured
power factor of 0.717. In Fig. 25, the measured average torque
of the manufactured RSM is compared to the simulated average

torque. The measured average torque agrees well with the sim-
ulated torque, with the peak simulated average torque of 88.5
Nm compared to the measured average torque of 83.7 Nm.

VII. CONCLUSION

In this paper, a weighted-factor, multiobjective optimization
technique was implemented in the multiobjective optimization
of RSMs. This multiobjective optimization was conducted on a
large range of machine pole number, flux-barrier number, and
power-level combinations.

By implementing the weighted-factor optimization tech-
nique, a relationship between power factor and average torque
for a RSM was determined. This relationship was proven
to be flux-barrier number, pole number, and power-level-
independent. Moreover, it was found that this relationship can
be used for prediction of optimization results, with the power
factor and average torque successfully estimated for a large
variation of machine-design configurations within a 95% con-
fidence level. This relationship gives the designer the ability to
estimate average torque and power factor at a specific weight
point, thus allowing for weighted-factor adjustment to achieve
the average torque and power factor relevant to a specific
application.

An eight-pole, four-flux-barrier RSM was selected for man-
ufacturing to validate the simulated performance results. The
torque ripple of the selected machine was successfully reduced
to about 5% by using the technique described in [11].

With the rotor proven to be mechanically sound under rated
conditions, the RSM was manufactured and tested. The mea-
sured torque and power factor results compared well with the
simulated values, with a 1.1% difference in the peak power
factor and a 5.4% difference in the peak average torque.
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