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Fig. 11. JMAG current density plot of the 3-D FE eddy current coupling
model simulated at a 3% slip. The position of the magnet is also shown.

determining such a model is extremely complex due to the
current distribution being unknown, the varying permeabilities
of the materials in the eddy current coupling, and the 3-D
behavior that has to be modeled [15], [16]. There are a few
examples in literature of 3-D analytical models for eddy current
couplings; however, dubious assumptions are made regarding
the behavior of the eddy currents [15], [16]. For the coupling
proposed in this study, the model is further complicated by the
addition of the conductive ring.

An analytical model based on common electrical laws, such
as those of Faraday and Ohm, is proposed in this study. The
challenge with this approach is that there are no speciÞcally
deÞned current paths, due to the featureless conductive material
of the slip rotor. However, through observations made using
modern 3-D FE simulation technology, a model for the current
path is developed for low slip frequencies.

Given the dimensionshm , hc (thus, alsolg), and lpm in
Fig. 4, the analytical model determines the dimensionshy , hs,
andlc and calculates the torque of the eddy current coupling. In
[5], it is found that the conductor end lengths may be designed
as 50% of a pole pitch, leading to

lc = � p + lpm (1)

where� p is the arc length of a single pole pitch.

A. Current Path Model

When studying the current density plot of the conductive
component of the slip rotor, as simulated in JMAG and shown in
Fig. 11, it is evident that the eddy currents tend to follow circu-
lating paths symmetrically across an axis between the magnet
poles. These current paths may be modeled asn consecutive
concentric current loops covering an entire pole pitch in the slip
rotor as shown in Fig. 12. The center of these concentric loops is
in the middle between two magnetic poles. They-axis in Fig. 12
is in the axial direction, and thex-axis is in the tangential or arc
direction.

Every current loopi has2i smaller elements in the arc length,
each of tangential widthdx = rcd� , axial lengthdy, and depth
hc. A single element is shown in its loop in Fig. 13. As shown
in Fig. 13, the tangential or arc length width of current loopi
is 2� i , andyi is the axial length of the loop.K y in Fig. 12

Fig. 12. Model of concentric current loops.

Fig. 13. Model of individual current loop.

is an axial length that deÞnes the region where the axial eddy
current ßow starts to turn to ßow in the tangential direction.
K y is a constant for a particular eddy current coupling. It has a
signiÞcant effect on the accuracy of the analytical model and is
discussed separately in Section VIII.

From the previous discussion and from Figs. 12 and 13, ifdx
is a small chosen arc width, the following are calculated:

n =
� p

2dx
(2)

� i = idx with i = 1 , 2, . . . , n (3)

dy =
lc Š K y

2n
(4)

yi = K y + 2 idy. (5)

Finally, the axial active length of current loopi (yai ) is
calculated as

yai =
�

yi yi � lpm

lpm yi > l pm . (6)
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