
Analytical Analysis of a Radial Flux Air-Cored
Permanent Magnet Machine with a Double-Sided

Rotor and Non-overlapping Double-layer
Windings

P. J. Randewijk, M. J. Kamper

Abstract—The radial flux density in the stator region of the
Radial Flux Air-cored Permanent Magnet (RFAPM) machine
can be calculated analytically using the subdomain analysis
method. From the analytical solution the optimum pole width of
the permanent magnets, that would produce a quasi sinusoidal
radial flux density distribution in the stator region, can easily be
calculated. The requirement for a sinusoidal radial flux density
distribution in the stator region, is that it allows for a voltage
– and torque constant to be defined for the RFAPM machine.
This not only simplifies the design procedure in terms of sizing
the RFAPM machine, but also simplifies the control aspects
of the RFAPM machine. Furthermore, the torque developed
by a RFAPM machine, specifically with regard to the size and
shape of the ripple torque is also calculated analytically using
the Lorentz method. All the analytical results are benchmarked
against Finite Element Modelling (FEM).

Index Terms—air-cored, electrical machine constants, non-
overlapping windings, permanent magnets, radial flux density
distribution, ripple torque

NOMENCLATURE

A. Roman Symbols

a number of parallel circuits per phase
A magnetic vector potential, (Wb/m)
Bg flux density in the airgap, (T)
Brem remanent flux density of the permanent mag-

nets, (T)
Ef back-EMF voltage, (V)
h height/thickness of the stator coils, (m)
hm magnet height/thickness, (m)
hy yoke height/thickness, (m)
Hc coercivity of a permanent magnet, (At/m)
Hg magnetic field intensity in the airgap, (At/m)
Hm magnetic field intensity in the permanent mag-

net, (At/m)
Is stator current space vector, (A)
k∆ coil side-width factor
km the magnet- (or pole) arc-to-pole-pitch-ratio
kE voltage constant, (V/rad/s)
kT torque constant, (Nm/A)
kw general winding factor
kw,pitch winding pitch factor
kw,slot winding slot width factor
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` active copper length of the stator conductors,
(m)

`c mean magnetic flux path length in the iron
core, (m)

`g airgap length, (m)
M0 residual magnetisation, (A/m)
n conductor density distribution
N number of turns per coil
p number of pole pairs
q number of coils per phase
Q total number of coils (Q = 3q)
rcm the radius as measured to the centre of the

magnets, (m)
rn nominal stator radius, (m)

B. Greek Symbols

∆ 1
2 coil side-width angle of the stator coils, (rad)

λ1 flux-linkage of a single turn, (Wb-turns)
Λ total flux-linkage per phase, (Wb-turns)
µrecoil recoil permeability (µ0µrrecoil)
µrrecoil relative recoil permeability
φ azimuthal axis in cylindrical coordinates
τq coil pitch angle, (rad)
τq,res resultant coil pitch angle, (rad)
θm pole/magnet width angle, (rad)
θp pole/magnet width angle, (rad)

C. Accents or attributes
~A a vector field
Â amplitude or peak value

D. Subscripts

r|φ|z the cylindrical coordinates components

I. INTRODUCTION

THE Radial Flux Air-Cored Permanent Magnet
(RFAPM) machine with a double-sided rotor and

non-overlapping windings is shown in Fig. 1 and was first
presented in [1]. The RFAPM machine was conceived with
medium to small direct drive wind generators in mind and
is basically a dual of the Axial Flux Air-Cored Permanent
Magnet (AFAPM) machine that also utilises a double-sided
rotor and non-overlapping windings [2].

These RFAPM and AFAPM machines are designed with
efficiency in mind. Due to the air-cored stator windings there
are no stator iron losses in these machines. In addition, by
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Fig. 1. A 3D view of a 16 pole RFAPM machine with double-layer,
non-overlapping, concentrated winding configuration, [5].

using non-overlapping windings, the end-turn winding length
and hence the associated copper losses are also minimised,
[3]. The air-cored stator also implies no cogging torque,
resulting in not only “smooth running”, [4], but also very
low cut-in wind speeds for wind generator applications.
However, the structural integrity of the RFAPM machine’s
cylindrically shaped rotor yokes [5], is much higher than
that of the AFAPM machine’s disc shaped rotor yokes [6],
resulting in a 36% weight reduction being able to achieve1

for the RFAPM machine when compared to an AFAPM
machine for the same 7 kW rating, [5].

The design procedure for the RFAPM machine that was
presented by [5] was reliant on Finite Element Modelling
(FEM) in order to calculate the radial flux density distribu-
tion. In this paper the radial flux density distribution of the
RFAPM machine is solved analytically using the subdomain
analysis method, [7], which is more than two orders of
magnitude faster than using FEM. The analytical solution
to the magnetic fields allows us to calculate the optimum
permanent magnet (PM) pole width that would result in a
quasi sinusoidal radial flux density distribution in the stator
region of the machine very efficiently.

It will be shown that with a sinusoidal radial flux density
distribution, a voltage constant can deduced from which the
steady state back-EMF of the RFAPM machine can easily
be calculated from the mechanical steady state speed of the
machine. This also results in a torque constant (equal to the
voltage constant) from which the steady state mechanical
torque can be calculated from the stator current space vector.
From a design perspective, these constants, expressed in
terms of some of the key machine parameters, allows for the
quick sizing of the RFAPM machine for a given application.
Furthermore, from a control perspective, these constants
allow for simple control, similar to a normal brushless DC
machine, to be performed on the RFAPM machine.

A torque equation for the torque developed by the RFAPM
machine using the Lorentz method that includes the ripple
torque component is also derived in this paper. No evidence
in the literature could be found for this ever being done for
a RFAPM machine.

The Lorentz method is much more computationally effi-

1The total mass of the RFAPM machine was 59 kg compared to the 92 kg
of an equivalent AFAPM machine.

cient, than the Maxwell stress tensor (MST) method [8], in
that it only requires the radial flux density component caused
by the PMs to be solved for the torque calculation. The
Lorentz method could also be applied to AFAPM machines
(or any air-cored machine for that matter), in which case
its computational efficiency, compared to the MST method
used in [9] or FEM used in [10] for reduced torque ripple
optimisation, would be quite evident.

It must be emphasised that the Lorentz method can only
be using for air-cored machines. In iron-cored machines, due
to the additional cogging torque, other calculation methods
should be used, [8] and [11].

II. ANALYTICAL FIELD ANALYSIS

The different subdomains or regions of the RFAPM
machine are shown in Fig. 2, which depicts a linear 2D
representation of the RFAPM machine as shown in Fig. 1.
The governing equations for the different subdomains of the
RFAPM machine, are given in Tabel I.
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Fig. 2. A linear representation of the different subdomains or regions.

Subdomain Description µr Governing equation

I Rotor Yoke µy ∇2 ~A = 0

II Magnets 1 ∇2 ~A = −µ0
(
∇× ~M0

)
III Stator 1 ∇2 ~A = 0

IV Magnets 1 ∇2 ~A = −µ0
(
∇× ~M0

)
V Rotor Yoke µy ∇2 ~A = 0

TABLE I
THE GOVERNING EQUATIONS FOR THE DIFFERENT SUBDOMAINS.

In Tabel II, the key dimension of the RFAPM machine
are shown with respect to the 2D linear representation of
the machine as shown in Fig. 2. The analytical analysis
presented in this paper together with the FEM verification
will be done using these values.

Description Symbol Value
Number of pole-pairs p 16
Number of coils per phase q 8
Nominal stator radius rn 232 mm
Active stator/copper length ` 76 mm
Stator coil thickness/height h 10 mm
N48 NdFeB PM thickness/height hm 8.2 mm
Rotor yoke thickness/height hy 10 mm
Air-gap length `g 10 mm

TABLE II
KEY DIMENSION FOR THE RFAPM MACHINE UNDER CONSIDERATION.
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For the analytical analysis, the following assumptions
were made. Firstly, for the NdFeB grade N48 PMs used,
the recoil permeability was taken as “unity”, whilst the
permeability of the rotor yoke’s back iron was regarded to
be constant, [12]. The latter, although ignoring saturation,
allows us to solve the flux density in the rotor yoke to
estimate the amount of saturation in the yokes so as to
gauge the accuracy of the solution. Finally, to simplify the
mathematics in the analytical solution of the magnetic vector
potential the residual magnetisation was also approximated
to

~M0 ≈
rcm
r
·
~Brem

µ0
(1)

with rcm the radius measured to the centre of each magnet
and ~Brem the remanent flux density of the PMs used, [13].

For the annulus shaped subdomain structures, the general
2-D solution of the magnetic vector potential in all the
regions has only a z-axis solution and is of the following
from

Az,gen(r, φ) =

∞∑
m=1,3,5,...

(
Cmr

mp +Dmr
−mp) cosmpφ , (2)

with the particular solution in regions II and IV, given by

Az,part(r, φ) =

∞∑
m=1,3,5,...

Gm cosmpφ , (3)

with

Gm = −4rcmBrem cosmpβ

m2pπ
(4)

and

β =

(
1− km

2

)
π

p
, (5)

with km the magnet- (or pole) arc-to-pole-pitch-ratio as
graphically shown in Fig. 2.

The relationship between the magnetic vector potential,
the flux density and the magnetic field intensity, is given by

~B =∇× ~A and (6)

~H =
~B

µ
. (7)

Using the following boundary conditions,

A(v)
z = 0 , (8)

B(v)
r = B(v+1)

r and (9)

H
(v)
φ = H

(v+1)
φ , (10)

with (8) applied to the inner and outer boundary and (9)
and (10) to the remaining boundaries situated between two
subdomains, the boundary matrix will have the following
form (only shown for the first five coefficients):

rmpi r−mpi · · ·
rmpii r−mpii −rmpii · · ·
rmp−1
ii −r−mp−1

ii −rmp−1
ii · · ·
rmpiii · · ·
rmp−1
iii · · ·

...
...

...
. . .


·



CIm
DI
m

CIIm
DII
m

CIIIm
...


=



0
GIIm

0
−GIIm

0
...


(11)

The radii at the different boundaries, ri to rvi, can be
calculated by the following equations:

ri = rn − h
2 − `g − hm − hy (12)

rii = rn − h
2 − `g − hm (13)

riii = rn − h
2 − `g (14)

riv = rn + h
2 + `g (15)

rv = rn + h
2 + `g + hm (16)

rvi = rn + h
2 + `g + hm + hy (17)

From (2) and applying (6), the solution of the radial
flux density distribution in the stator region is given by the
following

Br(r, φ) = −1

r
·
∞∑

m=1,3,5,...

mp(CIIIm rmp+

DIII
m r−mp) sinmpφ

, (18)

with CIIIm and DIII
m the coefficients in region III (the stator

region) obtained from the boundary condition matrix (11).
The space harmonics present in the radial airgap flux

density distribution in the centre of the stator winding region
can be obtained directly from (18) without the need to
perform a FFT, by setting r=rn and substituting h for m,
so that we can write,

B̂r,h = −hp
rn

(CIIIh rhpn +DIII
h r−hpn ) . (19)

The total harmonic distortion (THD) of the radial flux
density in the airgap can be calculated as follows:

%THDBr
=

√∑∞
h=2 B̂

2
r,h

B̂r,1
× 100% (20)

In [14] the shape of the PMs were optimised by varying
the thickness of PM in order to obtain a sinusoidal flux
density distribution. It was found that by varying only the
PM’s pole-arc-width, i.e. effectively km, the shape of the
radial flux density distribution in the centre of the stator
could also be made quasi sinusoidal, as is shown in Fig. 3.
Although km=0.6875 resulted in the lowest percentage total
harmonic distortion (%THD) value for the radial flux density
distribution, a final value of km=0.7 was chosen in order
to achieve a slightly higher fundamental radial flux density
distribution value.
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Fig. 3. The magnitude of the peak – and fundamental radial flux density
distribution as a function of km.

From the 2-D analytical analysis with a km value of
0.7, the peak value of the radial flux density distribution in
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the centre of the stator winding region, B̂r, was calculated
as 0.779 T with the fundamental component, B̂r,1 equal
to 0.824 T. However, the question arises, “Can we obtain
the same result using simple (1-D) equivalent magnetic
circuit model?” From Fig. 2, using an equivalent C-type
magnetic circuit model, [15] and assuming that fringing can
be ignored, thus assuming that the flux density in the PMs,
Bm, is the approximately same as that in the airgap, Bg , that
the permeability of the iron yoke is infinity and that average
flux path will be in the centre of the PMs, the radial flux
density in the airgap can be approximated by the following
equation:

Bg =
Brem(

1 + µrrecoil · 2`g+h
2hm

) , (21)

From (21), the flux density inside the airgap, Bg , was
calculated as 0.788 T which correlates very closely with
the 2-D analysis results. Furthermore, from (21) the PMs’
thickness or width, hm, can easily be calculated as follows:

hm =
(`g + h

2 )µrrecoil(
Brem
Bg

− 1

) . (22)

From the simple (1-D) equivalent magnetic circuit anal-
ysis it is however impossible to predict the exact shape
of the flux density distribution and hence to calculate the
fundamental component of the flux density distribution. This
is due to the fact that the 1-D approach of the equivalent
magnetic circuit analysis does not take any cognisance of
the magnetic pole width or inter pole flux leakage. The
calculated flux density values will therefore be exactly the
same, whether the magnetic poles span the entire pole pitch
or only half the pole pitch.

In Fig. 4 the 2-D analytically calculated radial flux density
distribution in the centre and on the edges of the stator
region is compared with a Maxwell R© 2D FEM solution.
The analytically calculated radial flux density values were
found to be only 3% higher than those of the FEM solution.
This could be attributed to the saturation of the relatively thin
rotor yokes used by the RFAPM machine. The analytically
calculated flux density values in the rotor yokes reached a
maximum of ≈ 2.7 T at the edges of the PMs compared to
just under 2 T using FEM, a clear indication of saturation
occurring in the rotor yokes.
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Fig. 4. The analytically calculated radial flux density distribution in the
stator region of the RFAPM machine.

III. WINDING CONFIGURATION

In Fig. 5 the three-phase winding configuration for a dual-
rotor RFAPM machine with non-overlapping double layer
windings is shown. The Fourier expansion of the conductor
density distribution for phase a can be written as

na(φ) =

∞∑
n=1

bn sin(nqφ) (23)

with

bn = −2qN

π
· kw,n (24)

with the winding factor expanding to

kw,n = kw,pitch,n · kw,slot,n , (25)

with the pitch factor,

kw,pitch,n = sin
(
n(π3 −∆)

)
(26)

and the “virtual” slot – or coil side-width factor,

kw,slot,n =
sin(n∆)

n∆
, (27)

with ∆, half the coil side-width angle, as defined in Fig. 5.

ωmech

B̂r,1 cos(pφ − pωmecht − γ)
drds

φ
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c c′

4 4’3 3’2 2’1 1’

b b′

2∆
q

π
p

γ
p

2π
Q

Fig. 5. Three-phase winding configuration for a Dual-Rotor RFAPM
machine with non-overlapping double layer windings.

With the number of pole pairs, p, equal to twice the
number of coils per phase, q, due to the non-overlapping
winding configuration, the only winding factor harmonics
that need to be considered are the second order harmonics,
i.e. those with n=2m.

IV. FLUX-LINKAGE AND BACK-EMF CALCULATION

The flux-linkage for a single turn can be calculated form
the magnetic vector potential as follows, [13],

λ̂1(r, φ) =

∫
S

∇× ~A · d~s . (28)

From the winding density distribution, (23), and assuming
perfectly symmetrical phase windings, the peak value of the
flux-linkage for all three phases can be calculated as follows,

Λ̂a,b,c =
q

a

∫ 1
2 τq,res

− 1
2 τq,res

na(φ)λ̂1(r,φ)dφ . (29)

If we assume that the magnetic vector potential in the
winding region is everywhere the same as in the centre, i.e.
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at r=rn, the flux-linkage can thus be calculated, from the
2-D analytical field solution, as

Λ̂a,b,c =
2q`

a

∫ 1
2 τq,res

− 1
2 τq,res

na(φ)Az(rn, φ)dφ (30)

= −2q`rnN

a

∞∑
m=1

kw,2mb
III
m|Az

(31)

with, from (2),

bIIIm|Az
= CIIIm rmp +DIII

m r−mp . (32)

However, if we only consider the fundamental component
of the solution, i.e. m=1, the solution to the flux-linkage can
be approximated by

Λ̂a,b,c ≈
2qrn`N

ap
kw,2B̂r,1 . (33)

Further, assuming that the machine is rotating at a constant
speed of ωmech and using the approximation for the peak
flux-linkage of (33), the back-EMF for each phase can be
approximated as

ea = Êa,b,c sin
(
pωmecht

)
(34)

eb = Êa,b,c sin
(
pωmecht− 2π

3

)
(35)

eb = Êa,b,c sin
(
pωmecht− 4π

3

)
(36)

with

Êa,b,c ≈ −
2qωmechrn`N

a
kw,2B̂r,1 . (37)

The general solution to the back-EMF, can thus be written
as

Êf = kEωmech (38)

with the back-EMF

Êf = Êa,b,c (39)

and the voltage constants,

kE =
2qrn`N

a
kw,2B̂r,1 . (40)

In Fig. 6 the back-EMF calculated analytically and that
calculated using FEM are compared with the approximated
values as calculated in (34) to (36). As can be seen, the
approximated back-EMF values compare extremely well
with both the analytical and FEM values.

V. TORQUE CALCULATION

A. Average Torque

For motor operation with the phase voltage and current in
phase or for generator operation with the phase voltage and
current 180◦ out of phase, the average mechanical developed
torque can be written as

Tmech =
3ÊaÎa
2ωmech

, (41)

with Êa and Îa the peak values of the back-EMF and phase
current respectively. Substituting (37), the approximated
amplitude value of the back-EMF, into (41), the average
torque can be approximated by
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Fig. 6. The back-EMF voltage waveforms.

Tmech = 3
2kE Îa (42)

Tmech = kT Îs (43)

with the torque constants defined as

kT = kE =
2qrn`N

a
kw,2B̂r,1 (44)

from (40) and the stator current space vector

Îs = 3
2 Îa . (45)

B. Torque Ripple

From (23) and assuming balanced sinusoidal current, the
three phase current density distribution function can be
represented by the following Fourier series,

Jz =


− 3qÎaN
arnhπ

∞∑
n=1

kw,n sin
(
nqφ+ ωt

)
for n = 3k − 1

− 3qÎaN
arnhπ

∞∑
n=2

kw,n sin
(
nqφ− ωt

)
for n = 3k − 2

.

(46)

with k ∈ N1 for both cases and kw,n the winding factor for
all ‘n’ space harmonics.

The Lorentz method for the calculation of the mechanical
torque, in integral form, can be given by the following
equation

Tmech = `

∫ rn+ h
2

rn−h
2

∫ 2π

0

r2JzBr dφ dr , (47)

with ` the active stator length.
Solving this equation, again with n=2m, yields the fol-

lowing solution

Tmech = −3q`NÎa
arnh

∞∑
m=1,5,7,...

kw,2mRmSm (48)
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with k ∈ N1 and

Rm =

∫ rn+ h
2

rn−h
2

r2 · mp(C
III
m rmp +DIII

m r−mp)

r
dr

(49)

= mp

[
CIIIm rmp+2

mp+ 2
− DIII

m r−mp+2

mp− 2

]rn+ h
2

rn−h
2

(50)

and

Sm =

{
cos
(
(m−1)pωmecht

)
for m=6k+1, k ∈ N0

sin
(
(m+1)pωmecht

)
for m=6k−1, k ∈ N1

(51)

and is displayed in Fig. 7 together with the torque calculated
using FEM, as well as the average torque calculated by (43).

0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00 11.25 12.50
Time, t (ms)

200

205

210

215

220

225

M
ec

ha
ni

ca
lT

or
qu

e,
T m

ec
h

(N
m

)

Using the Lorentz Method
Using FEM
Using the Torque Constant, kT

Fig. 7. The calculated torque waveforms.

The Lorentz method for the calculation of the torque
compares well with that done using FEM, and is only 3.3%
higher due to the 3% higher flux density of the analytically
calculated radial flux density. This is quite acceptable consid-
ering the fact that saturation in the rotor yokes is ignored. It
was however decided to test our theory that the difference in
the torque calculation between the analytical and the FEM
method is due to yoke saturation, by increasing the yoke
thickness, hy , to 20 mm.

As expected the analytical solution was exactly the same,
but the FEM solution was surprisingly only 0.5 % higher.
The remaining 3.5 % difference can thus not be attributed
to yoke saturation. After considering various options, it was
decided to also change the coercivity of the PMs used from
1,050,000 A/m to 1,114,084 A/m that would basically result
in a relative recoil permeability for the PMs, µrrecoil = 1.0 .

Again, the analytical solution was exactly the same, due
to the fact that it only makes use of the remanent flux
density value of the PMs and always assumes a relative
recoil permeability of unity, see Tabel I. The FEM solution,
as shown in Fig. 8, is now almost identical to the analytical
solution, except for a low frequency oscillation.

In spite of the low frequency oscillation in the FEM
solution to the ripple torque, the magnitude of the ripple
torque component of the analytical solution is calculated at
1.0% and compares extremely well with the FEM value
of 1.1 %. However from (51) it is clear that only sixth
order harmonics should be present in the ripple torque
output. A harmonic analysis of both the analytical and FEM
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Fig. 8. The calculated torque waveforms with a yoke thickness, hy =
20mm and a recoil permeability for the PMs, µrrecoil = 1.0 .

result are shown in Fig. 9. From the harmonic analysis
it can be seen that the sixth and twelfth harmonics are
indeed dominant, with the rest of the harmonics, except for
the second harmonic in the FEM solution, being relatively
small FEM “noise” components. However another FEM
solution done in SEMFEM, a propriety FEM package used
by Stellenbosch University, see [16], did not yield a second
harmonic component.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Harmonic Number

0.00

0.05

0.10

0.15

0.20

0.25

To
rq

ue
ha

rm
on

ic
s,

T m
ec

h|
h

T m
ec

h|
av

e.
×

10
0

%

Analytical
Maxwell® 2D
Maxwell® 2D (Tweaked)
SEMFEM

Fig. 9. The harmonic spectrum of the ripple torque.

After consultation with the technical support of the com-
mercial FEM package used, they advise us to “tweak” the
FEM model so that the coils are, “not touching the master
and slave boundaries” [sic]. This solution, also shown in
Fig. 9 eliminated the second order harmonic component
so that only the sixth order harmonics remained as was
shown by (51). Furthermore, with only the sixth and twelfth
harmonic dominant, it implies that the CIIIm and DIII

m

coefficients only need to be solved up to m=13 to accu-
rately predict the amplitude and shape of the torque ripple
component.

VI. CONCLUSIONS

In this paper it was shown how the radial flux density in
the stator region of a RFAPM machine can be calculated
analytically, using the subdomain analysis method. With the
analytical solution being more than two orders of magnitude
faster than the FEM solution, the analytical solution provides
us with a quick and easy way in which to determine the
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optimum pole arc width of the PMs used that would result
in a quasi sinusoidal radial flux density distribution in the
centre of the stator region.

Even with non-overlapping winding, a sinusoidal radial
flux density distribution results in a very simple solution
to the back-EMF solution of the RFAPM machine, from
which a voltage constant, similar that that used in traditional
brushless DC machines, can be derived. The voltage constant
is also equal to the torque constant, so that the torque of the
machine can be expressed in terms of the stator current space
vector.

It was also shown that for the analytical solution to
be accurate, the recoil permeability of the PMs should
ideally be unity. However for the N48 NdFeB magnets
used, the analytical solution resulted in 3.0 % error when
compared the the FEM solution. Saturation of the rotor yokes
only accounted for a 0.5 % error in the analytical torque
calculation.

Finally it was shown that only sixth order harmonics will
be present in the ripple torque component, with the sixth and
the twelfth harmonic components being dominant. It must
be noted that this will only be true provided that the stator
currents are perfectly balanced and sinusoidal.
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