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Abstract

In this paper we combine and extend two of our previous works to provide a more complete solution for the GPU-acceleration
of the Method of Moments using CUDA by NVIDIA. To this end, the formulations of the original 1982 Rao–Wilton–Glisson
paper are revisited and the scattering analysis of a square PEC plate is considered as a simple example. One of the primary
contributions of the paper is to serve as a guide for the implementation of other GPU accelerated computational electromagnetic
routines and as such provides a background on general purpose GPU computation as well as insight into the finer details of
the implementation. The results computed compare well with reference values, and from a performance point of view the GPU
implementation is found to be significantly faster. The fastest measured speedup for one of the phases of the Method of Moments
computations was more than 140×. This translates into a speedup of about 45× when considering the entire Method of Moments
solution process for the problem considered.
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I. INTRODUCTION

One of the techniques that is widely used in the modelling and analysis of electromagnetic scattering and radiation phenomena
is the method of moments (MOM) or boundary element method. One of the reasons for this is that the MOM incorporates
the correct behaviour for the radiation condition and does not require that free-space be discretised [1]. Although acceleration
methods such as the multi-level fast multi-pole method (MLFMM) exist, these are not applicable to all practical problems,
and at times a standard MOM implementation is required.

The use of GPUs to perform computational tasks not necessarily related to the graphics processing for which they were originally
designed has been around in some form or another since the late 1970s [2]. The end of 2006 saw great improvements both in
terms of usability and performance. This was mainly due to the introduction of the G80 architecture and CUDA by NVIDIA [3],
[4] and CTM (later the Stream SDK) by ATI/AMD [5]. Since then devices by both vendors have improved greatly with better
double precision support and peak single precision performance exceeding 2 teraFLOPS (TFLOPS). In this paper we leverage
the computational power of CUDA-capable GPUs to accelerate the method of moment analysis of a simple electromagnetic
scattering problem.

The application of GPU acceleration using CUDA to the MOM problem is presented in [6], although in that case acoustic
problems are considered and the matrix assembly formed part of an iterative solution scheme for the linear system that needs
to be solved. In this work the matrix is first assembled after which direct solution methods are employed this allows for the
matrix factorisation to be reused – which is especially useful in scattering problems such as the one considered here. The results
presented here rely on native double precision computation, whereas in [6] only single precision and double-single precision [7]
results are presented. In earlier papers by Chen, Xu, and Ding [8], and Peng and Nie [9] electromagnetic scattering problems
are considered, although they use OpenGL Shading Language [10] and Brook [11] respectively, and not NVIDIA CUDA as
is the case here and are as such restricted to single precision implementations.
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Two works that do employ CUDA and matrix factorisation methods to solve the MOM problem in computational electro-
magnetics are [12] and [13], although both once again only consider single precision implementations. Further, in [12] pulse
basis functions are used to model a two-dimensional scattering problem and not a generalized scattering problem based on the
Rao–Wilton–Glisson basis functions [14] as considered here. In [13] roof-top basis functions are used along with an integration
scheme that can only be used in a rectangular mesh with equal cells [15] to solve problems involving planar structures such as
micro-strip patch antennas. As is the case in this work, the MAGMA library [16] is also used to perform the LU decomposition.
The authors of [13] also present an investigation into the CUDA acceleration of the finite difference time domain (FDTD)
method in [17], where the regular grid and similar operations performed on each Yee cell [1] lend themselves well to GPU
acceleration.

This work sees the combination of two prior studies by the authors, namely [18] and [19], where two of the phases in the
MOM solution process have been considered independently. Although the method and results of [14] are also recreated in
[18], this paper provides a much more in-depth discussion of the development process. In [19] one of the phases is considered
purely from a linear algebra point of view and as such this work is the first direct application of the presented results to the
field of computational electromagnetics. Although that work provides a panel-based approach do deal with the memory size
limitations of current GPUs, this is not considered here as the nuances of the implementation are outside the scope of this
paper. Instead the MAGMA library – which forms part of the solution process in [19] – is used directly.

What further sets this paper apart from previous work, is that it intends to primarily serve as a guide in the GPU acceleration
of computational electromagnetic codes. To this end, the techniques outlined in one of the seminal papers in the MOM by
Rao, Wilton, and Glisson [14] are used as a core component of the implementation discussed. In order to make the discussion
more tangible, a simple scattering problem is considered and drives the development process. The problem also allows for the
verification of any code developed.

Section II serves to introduce the reader to the problem considered as well as providing relevant background information on the
method of moments and GPU computing in general. This is then built upon in the subsequent sections. In Sections III and IV
the GPU implementation of two of the phases of the method of moments are discussed in some detail. The Discussion starts
with the solution of the linear system, as the availability of libraries such as MAGMA [20] and CUBLAS [21] allow us to
ease into GPU computing. When considering the matrix assembly in Section IV the GPU related implementation details given
are more in depth. In Section V a number of results are presented that not only verify the accuracy of the implementations
discussed but also provides an analysis of the performance improvements attained by using GPU acceleration.

II. BACKGROUND

A. Monostatic scattering

In order to develop the discussion regarding the acceleration of the method of moments using GPUs, let us consider a simple
example – monostatic scattering off a square PEC plate as depicted in Figure 1. Such a plate, measuring one wavelength on
each side and located in the xy-plane, with an incident field propagating in the direction of the negative z-axis is used in [14]
and in this paper.

One quantity of interest in scattering problems such as these is the monostatic radar cross-section (RCS). This involves
determining the ratio of scattered power density to the incident power density at a given frequency and gives an indication of
how visible an object is to radar from a specific angle [1]. Usually such a calculation is performed over a range of incident
angles. The RCS of the square plate is used for verification of the implementations presented here, with the results presented
in Section V.

B. The Method of Moments

Scattering problems such as this can be solved numerically using the electric field integral equation formulation of the method
of moments and a simplified block diagram of the MOM solution process is given in Figure 2. The block diagram also illustrates
that some parts of the process are independent of the angle of incidence (for a given frequency) thus giving an indication of
where data can be reused to improve the computational efficiency of the solution.
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Fig. 1. A diagram showing an incident plane wave with arbitrary linear polarisation and direction of incidence (~k). The definitions of the angles (blue arcs)
used in the calculation of the radar cross section of an object located at the origin and the square PEC plate (grey) considered in this paper are also shown.

Consider for example the calculation of the impedance matrix [Z]. This matrix is independent of incident angle, and thus if
the RCS is being calculated it is only necessary to assemble it once. Furthermore, if the LU decomposition of the matrix is
performed outside the loop over the incident angles this factorisation can be used each time the linear system is solved, greatly
reducing the time required to obtain a solution.

When considering the GPU-acceleration of the method of moments, each of the steps offers its own challenges and potentials
for improving performance. It should also be noted that not all steps contribute equally to the total time required to obtain
a solution and in general the matrix assembly and the solution of the linear system of equations make up the bulk of the
computational requirement (as is highlighted in Section V) and as such, this paper focuses on their acceleration.

For the purpose of performance analysis the matrix assembly, excitation vector calculation, and linear system solution phases
are considered. The initialisation and post-processing phases are not included in the timing analysis. The initialisation phase

Initialisation

Post-processing

Calculate source 
vector:  {V}

Solve for {I}: 
[L][U]{I} = {V}

Calculate impedance 
matrix:[Z]   

LU factor [Z]: 
[L][U] = [Z]

Fig. 2. A block diagram showing the steps involved in obtaining the method of moments solution for a typical scattering problem. The phases considered
here for timing purposes are surrounded by a grey box and the phases for which GPU acceleration is applied also highlighted by double white outlines.
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may include the meshing any objects in the computation (such as the PEC plate) and although this can be a costly operation,
this only needs to be performed once after which the mesh can be stored and reloaded at a comparatively low cost. In contrast
to the initialisation phase, the post-processing phase may differ greatly depending on the information required. In addition the
time requirement is affected by things such as the level of detail required in the visualisation of calculated property, such as
the surface current on the plate. For the post-processing phase it is also possible to store the computed vector {I} and calculate
any desired properties at a later stage for a given mesh.

For the phases in the MOM process that are not considered in depth here, the reader is referred to texts such as [1] for more
background.

1) Matrix assembly: As should already be evident from the block diagram in Figure 2, the method of moments can be loosely
summarised as the construction of the complex valued linear system

[Z]{I} = {V}, (1)

and its subsequent solution to find the unknown current coefficients {I}. In this section, the assembly of the impedance matrix
[Z] is discussed with the solution of the linear system discussed in Section II-B2.

As an introduction to the matrix assembly process, the basis functions introduced in [14] are reviewed. To this end, consider
the diagram in Figure 3 that depicts two adjacent triangles in a triangulation (mesh) of a surface and the nth edge that is shared
by them. Choose one of the triangles as the positive triangle and denote it as T+

n and the other as T−n (the negative triangle).

Fig. 3. A diagram of a free edge in a surface mesh as well as the designation of the positive and negative triangles. Also shown are the vectors used in the
definition of the basis function associated with the edge.

The basis function associated with the nth edge, ~fn(~r), at any point ~r in space is then given by [14]

~fn(~r) =


ln

2A+
n
~ρ+n (~r), ~r in T+

n

ln
2A−

n
~ρ−n (~r), ~r in T−n

0, otherwise,

(2)

with ln the length of the nth edge, and A+
n and A−n the areas of the positive and negative triangles associated with the edge

respectively. The vector ~r is the position where the basis function is to be evaluated and the ~ρ±n (~r) vectors are calculated as
the difference between ~r and the nodes opposite edge n (with orientations as indicated in Figure 3). This basis function then
represents a unit current density flowing across the edge and is only non-zero in the triangles that share the edge.

With the basis functions defined, the vector current density on the surface of the mesh can be discretised and approximated
by the weighted sum of the basis functions of all the triangles on the surface as follows [14]

~J(~r) =

N∑
n=1

In ~fn(~r), (3)

where N is the number of degrees of freedom (DOFs) - equal to the number of non-boundary edges in the surface triangulation
of the geometry. Solving for the unknown coefficients In (the elements of {I} in (1)) is the goal of the MOM solution phases
highlighted in grey in Figure 2.

Using these basis function definitions the entries, Zmn, of the impedance matrix [Z] can be calculated. In the classic RWG
formulation, this entry is approximated as the combination of the magnetic vector potentials as well as the electric scalar
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potentials at the centres of the triangles associated with the mth edge as a result of the current density associated with the nth

edge [14], expressed mathematically as

Zmn = lm

[
jω

2

(
~A+
mn · ~ρ+m + ~A−mn · ~ρ−m

)
−
(
Φ+

mn − Φ−mn

)]
. (4)

As such, it is required to integrate over both triangles associated with edge n. The integrands have the form

~A±mn =
µ

4π

∫
T±
n

~fn(~r)
e−jk|~r

c±
m −~r|

|~rc±m − ~r|
dT±n , (5)

and

Φ±mn = ∓ 1

4πjωε

∫
T±
n

ln

A±n

e−jk|~r
c±
m −~r|

|~rc±m − ~r|
dT±n , (6)

for the magnetic vector potentials and electric scalar potentials respectively. The vectors ~rc±m are the position of the centre
of the positive and negative triangles of edge m and the integrals are a result of a two-point approximation applied to the
integration over these triangles [14].

Since the influence of all the edges on each other must be considered, the computational and memory demands of calculating
the impedance matrix [Z] is O(N2).

2) Solution of the linear system: As already mentioned, the method of moments reduces to solving the complex valued linear
system given in (1) for the unknown current coefficients {I}. As indicated in Figure 2 this step is dependent on both the input
frequency as well as the angle of incidence, although the latter only affects the excitation vector {V}. One of the ways with
which to solve such a linear system is to make use of the LU decomposition of [Z] [22]. In the LU decomposition the matrix
[Z] is decomposed into lower and upper triangular matrices ([L] and [U] respectively) as follows

[P][Z] = [L][U], (7)

with [P] a matrix that applies a number of row interchanges to [Z] in order to keep the process numerically stable [22]. The
matrices [L] and [U] can then be used to solve the linear system. In the case of an RCS calculation, they can be reused for
each incident angle as the matrix [Z] (and thus its factors) does not change.

The factors [L] and [U] are used as follows to solve the desired linear system. Firstly construct the vector {b} as

{b} = [L]
−1

[P]{V}, (8)

and then solve the linear system
[U]{I} = {b}. (9)

Although the computational cost of obtaining [L] and [U] through LU decomposition is O(N3), the triangular nature of
these matrices result in the above operations being performed at a cost of O(N2). This compares favourably to full Gaussian
elimination, especially if the operations need to be performed repeatedly [22]. In this paper, only the LU decomposition is
considered for GPU acceleration by using the routines provided by the MAGMA library. The steps in (8) and (9) are however
included for timing purposes.

C. General purpose GPU computing

As already mentioned, the use of GPUs for general computational tasks has seen much interest of late and can be attributed
to a number of reasons. The rapid increase in the peak performance of these devices is one of them [23], but perhaps more
important in their adoption has been the introduction of programming environments such as the StreamSDK by ATI [5] and
CUDA by NVIDIA [4] as well as the platform-independent OpenCL [24] which have greatly improved the ease with which
these powerful devices can be programmed. The importance of ease of use is clearly illustrated by CUDA’s strength in the
market over competing offerings. For the purpose of this paper CUDA is used for the required GPU implementation.

A CUDA capable device, such as the GeForce GTX 280 (built on the GT200 architecture [25]) used to obtain the results
presented in this work, can be seen as an external accelerator to the host. The device has its own memory hierarchy and
cannot, in general, access the host memory directly [23]. Thus, before any computation can take place on the device, device
memory must be allocated and the required input data transferred from the host memory to the device memory. After the
desired computation has been performed on the device and the results are available in device memory, these must then be
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CPU (host) GPU (device)

Initialise

Allocate device memory

Transfer input data

Launch Kernel
blockDim
gridDim

Execute kernel for all threads

Complete

Transfer output data

Cleanup

Fig. 4. A diagram showing the program flow of a typical CUDA application. blockDim and gridDim represent the dimensions of each block and the
grid and are used for kernel execution.

transferred back to the host before they can be used further on the host. This data flow is represented schematically in Figure 4.
Since the cost in transferring data to and from the device must also be taken into account when considering the performance
of any GPU implementation, algorithms that perform a large number of operations per byte transferred are better suited to
GPU acceleration.

One of the primary concerns when designing CUDA was that the resultant architecture be scalable. This is especially important
in a competitive market such as consumer graphics as there are a number of segments that need to be addressed separately. A
scalable architecture means that a single design can be used as the basis for products ranging from low-performance entry-level
devices to high-end devices such as the GTX 280 considered here.

Although the smallest computational unit on such devices is a CUDA core or streaming processor (SP) – a single 32bit floating
point and integer processor – it makes more sense to start discussions at the level of the symmetric multiprocessor (SM). Each
SM is made up of eight SPs and in the GT200 architecture also includes two special functions units (SFUs) and a double
precision (64bit) floating point unit (DP) [25]. There is also a small shared memory area that can be used as a user-managed
cache. Although each SM functions independently, multiple SMs are grouped into a thread processing cluster (TPC) with
instruction scheduling and register hardware being shared between them [25]. In the case of the GT200 architecture each TPC
is made up of three SMs, whereas with the G80 architecture there are only two SMs per TPC. A TPC is then the smallest
independent unit from a hardware production point of view, with a low-end device containing only one TPC (16 to 24 CUDA
cores). In a high-end device such as the GTX 280, ten TPCs are used resulting in a device with 240 CUDA cores.

In order to utilise the large number of cores at its disposal, CUDA provides the ability to manage thousands of lightweight
GPU threads in hardware which can be scheduled and with zero overhead [26]. In order to organise these threads from both
a programming and execution point of view, they are grouped into blocks that can be one, two, or three-dimensional and the
blocks can then further be grouped into a one or two-dimensional grid [23]. Each of the threads can then be uniquely identified
based on its position in the global grid (using its position in a block and that blocks position in the grid) and this information
can be used to decide which part of a large data set a particular thread is responsible for processing [26]. This is illustrated
further with reference to the problem considered here in Section IV-C. Each of these threads executes the same device code
called a kernel, which is the code responsible for performing a desired computation on the device, and is typically unique to
the problem that is being considered.

The arrangement of threads into blocks in a grid further provides CUDA implementations with a scalability on hardware of
differing capabilities. This is achieved by assigning each of the blocks in the grid to an SM for execution where the required
instructions are executed by the SPs (or SFUs or DP) for each of the threads in the block in a SIMD fashion [26]. If a group
of threads are stalled – when waiting for a high latency memory transfer for example – another group of threads is scheduled
(at zero overhead) to continue their execution. This is termed latency hiding and is one of the reasons why it is important to
ensure that data sets are big enough to ensure that a large number of threads are used. Since a block of threads executes on
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a single SM, the shared memory of the SM can be used as a cache that allows for communication between the threads in a
block. If the number of blocks exceeds the number that can be handled by the SMs on the device at once, additional blocks
are assigned once blocks complete their execution of the kernel.

It should be noted that although the discussion here focuses on CUDA, many of the concepts – especially from the software
point of view – have equivalents in other languages such as OpenCL and hardware implementations such as those of AMD/ATI.
In terms of the software, the idea of a CUDA thread, block, and grid can be replaced by a work item, work group, and global
work size respectively [27]. This direct equivalence is to be expected since a CUDA device is also capable of executing
OpenCL code. On the hardware side, a direct comparison is more difficult as the NVIDIA and AMD/ATI use vastly different
architectures. The concepts of CUDA SPs, SMs, and TPCs can however be loosely mapped to a processing elements, stream
cores, and compute units, respectively [28]. As a result of these similarities, the implementations discussed here could also be
successfully ported to OpenCL with similar performance improvements.

An in-depth discussion of AMD/ATI hardware and OpenCL is outside the scope of this article, and as such the reader is referred
to sources such as [28] and [24]. In addition to providing an introduction to OpenCL, [26] also provides a lot of information on
CUDA – both in terms of the hardware and software architecture and the development process. Another excellent introduction
to CUDA development concepts is [29] while the CUDA C Programming Guide provides a decent background on CUDA in
general [23].

III. IMPLEMENTATION: SOLVING THE LINEAR SYSTEM

As discussed in Section II-B2, the linear system that results as part of the method of moments can be solved using an LU
decomposition of the impedance matrix [Z]. One of the widely accepted libraries that perform this kind of decomposition (and
others) is the LAPACK [30] library. With regards to GPU computing, there are two main offerings that provide a subset of
LAPACK’s functionality. The first of these is a commercial library by EM Photonics called CULA Tools [31] and the second
is a freely available library called MAGMA [16] developed by the same group responsible for the original LAPACK. Due to
its open source nature and pedigree, MAGMA was chosen for this investigation.

In the LAPACK library, the LU decomposition of complex double precision matrices is performed using the ZGETRF routine.
The matrices [L] and [U] obtained this way (as well as a vector of row pivots) are then used by the routine ZGETRS to
perform the operations in (8) and (9) to solve the linear system. The performance of the MAGMA library on high-end CUDA
capable devices such as the GTX 280 [25] outperforms a single core CPU implementation by a significant margin [20].

As discussed in [19] the limited memory on such devices means that out-of-core-like methods need to be investigated. Such
a method based on the panel-based left-looking LU decomposition of [32] that makes use of CUBLAS as well as a hybrid
approach that is built around MAGMA are presented by the authors in [19]. Although both of these overcome the memory
limitations imposed by the device, their implementation contains a number of intricacies that are not suitable for an introductory
text such as this. As such, only the use of the MAGMA and CUBLAS libraries to perform the LU decomposition is considered
here. This is the same approach followed in [13].

Using this approach here serves two purposes. Firstly, it introduces the reader to the field of GPU computing using CUDA
through third-party libraries, which hide a lot of the underlying detail of the implementation and as such provide a low cost
(in terms of development time) means to harness the computational power of these parallel devices. Secondly, it provides a
concrete example for the computational process as introduced in the previous section and shown in Figure 4. Although some
of the details might differ (due to the abstractions provided by the libraries), the computational flow will be similar.

Consider the routine in Listing 1. It shows the code required to perform the LU decomposition of a matrix Z using MAGMA
and CUBLAS. Note that the matrix is represented by a pointer of type double2 (defined as part of CUDA) which is a struct

with two double fields x, and y, with these used to store the real and imaginary component of a double precision complex value
respectively. The other parameters, N, LDZ, and IPIV, represent the matrix dimension, the leading dimension of the matrix as
stored in memory, and a pointer to a list to store the row pivots (calculated as part of the LU decomposition) respectively. The
matrix (as is the case with most BLAS and LAPACK routines) is stored in column-major format with the leading dimension
indicating spacing between the start of successive columns in memory [30].

Note that here the first step of import is to allocate the device memory for use in the computation. This is done by making
a call to the cudaMalloc() routine which accepts (from first to last) the pointer where the address of the allocated memory
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Listing 1. A routine to perform the LU decomposition of a matrix on a CUDA device using MAGMA and CUBLAS.
void LU_decomposition ( int N, double2* Z, int LDZ, int* IPIV )
{
// determine the leading dimension of the MAGMA matrix must be a multiple of 32
int LDM = N;
if ( N % 32 != 0 )

LDM = N + (32 - N % 32);
// determine the internal MAGMA panel size
int NB = magma_get_zgetrf_nb ( N );
// allocate the memory on the device
double2* pdev_Z;
cudaMalloc ( (void**)&pdev_Z, N*LDM*sizeof(double2) );
// MAGMA requires an additional workspace on the host
float* host_workspace;
cudaMallocHost ( &host_workspace, (NB*NR + 32*NB)*sizeof(double2) );
// transfer the matrix Z to the device
cublasSetMatrix ( N, N, sizeof(double2), Z, LDZ, pdev_Z, LDM );
// perform the LU decomposition
int INFO = 0;
magma_zgetrf_gpu ( &N, &N, pdev_Z, &LDM, IPIV, host_workspace, &INFO );
// check for an error in the LU decomposition
if ( INFO != 0 )
{

printf ( "An error occured in the LU decomposition: %d\n", INFO );
}
// transfer the LU decomposition of Z back from the device
cublasGetMatrix ( N, N, sizeof(double2), pdev_Z, LDM, Z, LDZ );
// free the allocated memory
cudaFreeHost ( host_workspace );
cudaFree ( pdev_Z );

}

must be stored as well as the number of bytes to allocate as parameters [23]. Note that after the call to this routine, the pointer
pdev_Z points to the start address of N*NBM*16 contiguous bytes of memory allocated on the device. The memory allocated by
cudaMalloc() must later be freed using a call to cudaFree() – which is equivalent to a malloc()–free() pair in standard C.

Although many of the MAGMA operations are performed in device memory, MAGMA also requires a work area on the host.
This memory is allocated using the cudaMallocHost() CUDA routine. Once again, the routine has a pointer and a size (in
bytes as parameters) although in this case, the pointer points to host memory and can thus be accessed safely in any host code
that follows [23]. As is the case with the cudaMalloc() (and standard malloc()) routine, memory allocated this way must be
freed – this time by the cudaFreeHost() routine.

As in Figure 4, following the allocation of memory on the device (and the host in this case), the input data needs to be
transferred to the device. Although this can be done using a call to the cudaMemcpy() routine [23], the CUBLAS routine
cublasSetMatrix() is used here instead [21]. The reason for this is that the CUBLAS routines wraps CUDA routines and thus
provides a simpler interface for dealing with matrices, as is the case here. The first two parameters for the cublasSetMatrix()

routine are the number of rows and columns in the matrix, followed by the size of each element. The final four parameters
are a pointer to the source matrix (in host memory) and its leading dimension followed by a pointer to the destination matrix
(in device memory) and its leading dimension.

Once the data is in device memory, the actual computation can begin. In this simplified case, this involves a call to the equivalent
of the LAPACK ZGETRF (complex double precision LU decomposition [30]) routine as provided by MAGMA – aptly named
magma_zgetrf_gpu(). The parameters to this routine are similar to a standard LAPACK implementation with the exception
that a pointer to the workspace in host memory is included. It should be noted that the variant of the routine used here (with
the _gpu suffix) leaves the computed result in device memory to be used later. Another implementation (magma_zgetrf()) is
provided that transfers the input matrix to and from the device internally, although device memory and a host workspace still
need to be allocated and freed by the user [20].

The final step in the process (apart from the freeing of the allocated memory already mentioned) is to transfer the output data
back from the device to the host. This is done using the cublasGetMatrix() routine. This routine has the same format as
cublasSetMatrix(), although in this case the source matrix (the fourth parameter) points to device memory and the destination
matrix (the second to last parameter) points to host memory [21]. Once this is completed the matrix Z in host memory has be
overwritten by the It is also possible to leave the LU decomposition of the matrix in GPU memory and use it in subsequent
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computations, but this is not considered here.

IV. IMPLEMENTATION: ASSEMBLING THE IMPEDANCE MATRIX

For the GPU acceleration of the matrix solution process, an off-the-shelf approach was followed. This is made possible by the
fact that the linear algebra methods employed are common to a wide range of scientific and engineering disciplines and as
such have received a lot of attention from the GPU programming community including NVIDIA themselves.

In the case of the method of moments matrix assembly, this approach cannot be used and it is required that we develop the
lower level GPU code ourselves. In the context of this paper, this is an ideal case, as it allows for us to illustrate some of
the finer points in GPU computing with the aid of our simple example. What is heartening is similar works such as those
found in [6], [9], [8] were able to attain meaningful speed ups over existing CPU implementation. As discussed, each of these
implementations differs slightly from our implementation and desired application and as such cannot be used verbatim.

Note that the discussion of this implementation does not make mention of the impact of the various CUDA memories on the
performance [33]. The aim of this is to keep the implementation as simple as possible. Furthermore, since the individual matrix
elements of (4) are independent of each other, the expected gain from using shared memory to share data between CUDA
threads is negligible.

A. The development process

In many cases today, GPU acceleration is added to an existing implementation. Even if this is not the case, it is often easier to
implement a CPU version of a given code first and then move on to a GPU implementation. This serves to provide reference
values which greatly aid in debugging, as well as providing a CPU implementation for (if somewhat crude) performance
comparisons.

The approach that we followed was to start with a Python implementation of the method as outlined in [14]. Python has a
number of strengths making it an ideal language for rapidly developing a prototype code. Even though experience shows that
the absolute performance of the Python code is significantly lower than that of a compiled implementation such as FORTRAN
or C/C++, it still allows for an analysis of the relative time required by the various phases in the solution process. One of
the great advantages of Python is its ability to be combined with native C/C++ or FORTRAN libraries using modules such as
ctypes [34]. This makes it particularly suited to benchmarking.

As mentioned, a Python implementation’s performance may be somewhat suboptimal resulting in biased performance com-
parisons with GPU implementations. For this reason the matrix assembly phase of the method of moments process is first
reimplemented in C++ with this resulting implementation used as the CPU-based reference implementation for performance
measurements. A third, GPU-based, version is then implemented using NVIDIA CUDA.

The use of the C++ and CUDA combination allows for the sharing of a lot of the code between the CPU and GPU-based
implementation greatly decreasing the implementation as well as testing and debugging time. In theory this would also be
possible using FORTRAN, but the FORTRAN compilers [35] for CUDA are commercial products and are not investigated
further at present. The sharing of code between the CPU and GPU implementations is discussed further in subsequent
sections and is an important point to consider in large software projects where regular maintenance and feature extensions are
commonplace.

B. The computational process

The block diagram in Figure 5 serves to provide a better understanding of the computational process associated with the matrix
assembly process. It also ties the equations from [14] in Section II-B1 to specific pieces of code and better illustrates how
they are related. Evident in the figure that all the computations required to calculate a single matrix element (Z[m,n] = Zmn

in (4)) can be grouped into a single computational unit or kernel which includes the evaluation of the integrals in (5) and (6).
It should be noted that each call to the kernel is responsible for calculating a single matrix element and that a kernel need not
be overly simple and can contain calls to other functions.
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for each m:
for each n:

calculate_Z_mn calculate potentials

integrate integrate

for each    pair:

calculate_Z_matrix

cuda_kernel_wrapper C
U

D
A

:

calculate_Z_matrix

C
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U
:

computational kernel

6
eq

5
eq

4
eq

Fig. 5. A block diagram showing the computational process of the method of moment matrix assembly phase for both the CPU and CUDA implementations.
The execution path for the CPU implementation is shown in red, with the GPU execution path shown in blue. Common elements are outlined in black and
make up the shared computational kernel. The relevant equations from Section II-B1 for various sections are also indicated.

In [14] matrix assembly by faces (and not edges) is suggested as this allows for the reuse of computed integrals which improves
performance. The face-based approach is not considered here due to the communication that would be required between the
GPU threads making the implementation more complex, but not impossible. (For the problem considered here the face-based
implementation was found to be about four times faster than the edge-based variant when considering the CPU implementation
where communication is not such an issue). In the edge-based implementation there is no relationship between the matrix
elements and thus no synchronisation needs to be performed between the kernels. This makes it a data-parallel task for which
GPUs are well suited.

C. Problem domain segmentation

One of the first steps in the development of a GPU program (or parallel program in general) is to give some thought to the
segmentation of the problem domain. As mentioned briefly in Section II-C, one of the strengths of CUDA is its ability to
handle a large number of lightweight threads and that each of these threads can be identified uniquely and thus could be used to
perform a calculation on a separate data element. Furthermore, these threads can be grouped into one, two, or three-dimensional
blocks, with the blocks then arranged in a one or two-dimensional grid [23].

Since we are considering the assembly of the impedance matrix, which is a two-dimensional structure with each data element
a matrix entry, intuitively it makes sense to make use of two-dimensional blocks as well as a two-dimensional grid. This is
illustrated graphically in Figure 6, with a 5× 5 grid of 8× 8 blocks shown. The darker grey areas on the right and the bottom
of the grid indicate portions of blocks that do not correspond with matrix entries. This is as a result of the matrix not being a
multiple of the block size which must be the same for all blocks (although not necessarily the same in each dimension).
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block(2,2):thread(5,4)=

Fig. 6. A diagram depicting the arrangement of threads into two dimensional blocks and blocks into a two dimensional grid as used in this paper. Also
shown are the CUDA variables used to determine the identity of a thread at runtime as well as an example thread with global index [21, 20] highlighted in
blue.

In CUDA the global row and column index of a given thread, m, and n respectively, can be computed from the thread’s position
in a block (threadIdx), the block’s position in the grid (blockIdx), and the dimension of the blocks in the grid (blockDim) as
follows:
int m = blockIdx.x * blockDim.x + threadIdx.x;
int n = blockIdx.y * blockDim.y + threadIdx.y;

The variables threadIdx, blockIdx, and blockDim are built-in multidimensional variables in CUDA of type dim3 defined as:
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struct dim3
{
int x, y, z;

};
typedef dim3 dim3;

These are initialised at the time of the CUDA kernel call and will be discussed shortly.

D. Implementation details

With the problem domain segmentation discussed, what remains now is the discussion of how this is mapped to a CPU-based
or GPU-based implementation. To aid this, we revisit the diagram of the computational process block diagram in Figure 5. It is
clear that the process consists of two nested for loops over the observation and source edges related to the rows and columns of
the impedance matrix respectively. The listing showing this for the CPU implementation in the function calculate_Z_matrix()

is shown in Listing 2.

Listing 2. CPU implementation the function calculate_Z_matrix shown in Figure 5. Some parameters (mesh and geometry data) have been replaced
with "..." for readability.
void calculate_Z_matrix ( int N, double *Z, int LDZ, ... ) {
int m, n;
double2* pd_Z = (double2*) Z;
for ( n = 0; n < N; ++n ) {

for ( m = 0; m < N; ++m ) {
pd_Z[n*LDZ + m] = calculate_Z_mn ( m, n, ... );

}
}

}

Note that most of the parameters, such as the mesh data, have been excluded to improve readability, with only a pointer to the
impedance matrix, *Z, and the number of degrees of freedom, N being shown. In each iteration of the loop, the calculate_Z_mn

() function is called which calculates the specified element of the matrix, Zmn, and is also indicated in the block diagram in
Figure 5.

The equivalent CUDA function is shown in Listing 3. Note that although the function name and the parameters are the same,
the structure of the function is quite different. Most notable is the absence of any loops over the variables m and n as well as
a missing call to calculate_Z_mn().

Listing 3. CUDA implementation of the function calculate_Z_matrix shown in Figure 5. Some parameters (mesh and geometry data) and code have
been replaced with "..." for readability. Where code has been omitted, comments are used to indicate the tasks that are performed.
void calculate_Z_matrix ( int N, double *Z, int LDZ, ... ) {
// allocate and transfer geometric data to the GPU
...
// allocate memory for Z on GPU
double2 *pdev_Z = 0;
cudaMalloc ( (void**)&pdev_Z, N*LDZ*sizeof(double2) );
// determine the block and grid size
int block_size = 8;
int grid_size = 0;
if ( N % block_size == 0 )

grid_size = N/block_size;
else

grid_size = N/block_size + 1;

dim3 grid = dim3(grid_size, grid_size);
dim3 block = dim3(block_size, block_size);
// call the kernel wrapper
cuda_kernel_wrapper <<< grid, block >>>

( N, pdev_Z, LDZ, ... )
// transfer the result back from the GPU
cudaMemcpy ( Z, pdev_Z, cudaMemcpyDeviceToHost );
// free allocated GPU memory
cudaFree ( pdev_Z );
...

}
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What the CUDA version does contain is all the steps (as in Figure 4) to allocate and transfer the input data to the GPU
(indicated as comments), the transfer of the resultant matrix from the GPU (pdev_Z) to the host (Z), as well as the set up of the
grid of blocks as discussed in Section IV-C. Following this set up, there is a call to a wrapper function cuda_kernel_wrapper(),
for which the listing is given in Listing 4. This function is declared with the __global__ CUDA qualifier indicating that it is
a CUDA kernel function that is executed on the device. All code up until the point where this function is called is executed
on the host. Note that a CUDA kernel must be of return type void.

Listing 4. The CUDA kernel (indicated by the __global__ qualifier) that acts as a wrapper for the computational kernel calculate_Z_mn as shown
in Figure 5. Some parameters (mesh and geometry data) have been replaced with "..." for readability.
__global__ void cuda_kernel_wrapper ( int N, double2 *pdev_Z, int LDZ, ... ) {

// identify the current thread
int m = blockIdx.x*blockDim.x + threadIdx.x;
int n = blockIdx.y*blockDim.y + threadIdx.y;
// check if the thread falls in the matrix
if ( ( m < N ) && ( n < N ) ) {

// calculate the matrix element
pdev_Z[n*LDZ + m] = calculate_Z_mn ( m, n, ... );;

}
}

The CUDA code then, still contains no explicit loops, but does now contain a call to calculate_Z_mn(). The CUDA driver
and runtime subsystem uses the <<< grid, block >>> part of the device kernel call, to initialise the number and arrangement
of threads requested, and launches the function cuda_kernel_wrapper() for each of these threads [23]. Inside the function,
each thread’s unique ID is used to determine the data element ((m,n)) for which it is responsible and each thread calls the
function calculate_Z_mn(), calculating the desired matrix element. Checks are also in place to see if the thread falls in the
grey areas indicated in Figure 6, with threads that fall within these areas simply performing no calculations.

The calls to the calculate_Z_mn() routine in the case of the CPU and GPU implementation are identical, except that all call
by reference parameters, such as the address of the impedance matrix (pdev_Z), for the CUDA version must be pointers to
device memory and have been allocated using a call to cudaMalloc() [23]. The convention used by the authors is that a device
pointer contains the prefix pdev_, as is seen in Listing 4.

The code of the computational kernel calculate_Z_mn() – called in both Listing 2 and Listing 4 – is identical for the CPU
and CUDA versions. An outline of this routine, implemented in the file computational_kernel.h, is shown in Listing 5 and
includes other functions and definitions common to both the CPU and CUDA implementations. Note that the definition of
calculate_Z_mn() has a DEVICE_PREFIX before it. This is a preprocessor macro that is set to either __device__ or blank
depending on whether the code is do be compiled for a CUDA device or a CPU respectively.

Listing 5. An outline of the computational_kernel.h file containing the implementation of the calculation of the matrix elements Z[m,n]. Some
parameters (mesh and geometry data) and code have been replaced with "..." for readability. Where code has been omitted, comments are used to indicate
the tasks that are performed.
// include the common definitions
#include "common_defines.h"

// more computational functions corresponding to the blocks of Figure 5
...
// the implementation of calculate_Z_mn
DEVICE_PREFIX double2 calculate_Z_mn ( int m, int n, ... )
{

double2 Z_mn;
// calculate the value of the matrix element
...
// return the calculated value
return Z_mn;

}

In CUDA compilation, the __device__ qualifier is used to specify that a routine (or variable) is to be compiled to be executed
on a CUDA device [23]. This is similar to the __global__ qualifier already discussed, except that a __device__ function is not
a CUDA kernel. An important point to remember is that only __device__ functions can be called from within a __device__

function and as such all the routines for the MOM matrix assembly implemented in computational_kernel.h must be preceded
by the DEVICE_PREFIX macro.

A framework for primary file for the CUDA implementation, calculate_Z_CUDA.cu, is shown in Listing 6. In addition to
the routines already shown in Listing 3 and Listing 4, the file also includes the definition of the DEVICE_PREFIX macro as
__device__. Note that this occurs before the inclusion of the computational kernel (computational_kernel.h) and as such
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TABLE I
THE FILES DISCUSSED IN THIS SECTION. THESE ARE REQUIRED FOR EITHER THE CPU OR THE CUDA IMPLEMENTATIONS (OR SHARED BETWEEN THE

IMPLEMENTATIONS). NOTE THAT THE FILES, COMMON_DEFINES.H , CPU_DEFINES.H , AND CUDA_DEFINES.H HAVE NOT BEEN DISCUSSED IN
DETAIL.

CPU Shared CUDA
calculate_Z_CPU.cpp computational_kernel.h calculate_Z_CUDA.cu

cpu_defines.h common_defines.h cuda_defines.h

the macro will be available as required for compilation. The inclusion of a file cuda_defines.h is also shown (although not
discussed further) and contains any CUDA-specific definitions such as type and operator definitions.

Listing 6. An outline of the file calculate_Z_CUDA.cu showing the definition of the DEVICE_PREFIX macro used in Listing 5 (included as
computational_kernel.h). Also shown is the inclusing of a header file containing CUDA-specific implementation details, cuda_defines.h. Some
parameters (mesh and geometry data) have been replaced with "..." for readability.
#define DEVICE_PREFIX __device__
#include "cuda_defines.h"
#include "computational_kernel.h"

__global__ void cuda_kernel_wrapper ( int N, double2 *pdev_Z, int LDZ, ... ) {
see Listing 4

}

void calculate_Z_matrix ( int N, double *Z, int LDZ, ... ) {
see Listing 3

}

The framework for the CPU equivalent of calculate_Z_CUDA.cu is given in Listing 7 and is called calculate_Z_CPU.cpp.
The file also shows the definition of DEVICE_PREFIX (this time as blank) as well as the inclusion of the file containing the
implementation of the computational kernel. CPU-specific definitions are also realised using a separate header file (cpu_defines
.h). Note that the declarations (names and parameter lists) for the CPU and CUDA implementations of calculate_Z_matrix()
are identical as they are intended to be totally interchangeable.

Listing 7. An outline of the file calculate_Z_CPU.cpp showing the definition of the DEVICE_PREFIX macro used in Listing 5 (included as
computational_kernel.h). Also shown is the inclusing of a header file containing CPU-specific implementation details, cpu_defines.h. Some
parameters (mesh and geometry data) have been replaced with "..." for readability.
#define DEVICE_PREFIX
#include "cpu_defines.h"
#include "computational_kernel.h"

void calculate_Z_matrix ( int N, double *Z, int LDZ, ... ) {
see Listing 2

}

A summary of the files mentioned in this discussion (and for which implementation they are required) is shown in Table I.
Note that the specifics pertaining to the implementation of the MOM matrix assembly are restricted to the shared file
computational_kernel.h while implementation related details, such as memory transfer and allocation in the case of CUDA,
are contained in the device-specific files.

Although these implementations of the calculate_Z_matrix() routines can be used as part of a C/C++ implementation of
the entire method of moments process, the approach considered here is to call them as part of a Python implementation. One
of the ways to achieve this is to compile each of them as a shared library which can be loaded in Python using the ctypes
module. The commands for compiling each of the implementations as a shared library under Linux are
g++ --shared -fPIC -o libcalculate_Z_CPU.so calculate_Z_CPU.cpp
nvcc --shared --compiler-options -fPIC -o libcalculate_Z_CUDA.so calculate_Z_CUDA.cu

with the g++ compiler being used in the case of the CPU implementation and the NVIDIA C compiler nvcc (actually a compiler
driver) for the CUDA implementation [23]. The compiler options are similar (--shared and -fPIC) and both generate a shared
library file (libcalculate_Z_CPU.so and libcalculate_Z_CUDA.so respectively). These .so files can then loaded by ctypes
and used in Python.
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V. RESULTS

There are two sets of results that are of interest here. The first are verification results where the implementations are compared
to results presented in the literature as well as values computed with a commercial method of moments based code (FEKO
[36]). The second set of results consist of a performance analysis of the method of moments process, where the focus is
specifically on comparing the CPU implementation to the CUDA implementation.

For both the verification as well as the performance results, the same problem is considered, namely a square PEC plate with
each side measuring one wavelength. The problem has already been introduced in Section II and a diagram representing the
mesh used in verification results is shown in Figure 7. Also shown is the surface current distribution for a normally incident
plane wave as computed using the CPU-based implementation.

x

y

x =λ

y  =λ

B'

A

B

A' Einc

Fig. 7. A figure showing the 1λ square plate (lying in the xy-plane) used as a sample problem in this paper. The mesh (with 176 degrees of freedom) used
to obtain the verification results as well as the cut-lines and incident field as defined in [14] are also shown. The surface current calculated using the CPU
implementation is overlaid as a quiver plot.

A. Verification results

Since [14] was used as the starting point for the development of this code, the results from that paper are the first stop in
verification of the results in this implementation. In Figure 6 from [14] the magnitude of the surface current on a square PEC
plate illuminated by a normally incident (θ = 0, φ = 0) plane wave is evaluated along a vertical and a horizontal cut, AA′

and BB′ respectively. The cut lines as well as the polarisation of the incident field, ~Einc are shown in Figure 7.

Figure 8 shows a recreation of figure from [14] with the addition of results calculated using FEKO [36] as well as the
implementations considered here. For both the horizontal and vertical cuts the results obtained here agree well with both the
FEKO results as well as the results from the original paper [14].

As a final verification step, the monostatic RCS of the same square plate is computed. Figure 9 shows the computed results
for both the CPU and CUDA implementations compared to results obtained using FEKO. The CPU and CUDA results use the
mesh as shown in Figure 7 which equates to 176 degrees of freedom, whereas the FEKO solution was computed using 261.
The results computed using the methods presented here agree well with the FEKO results and the CPU and CUDA results are
virtually indistinguishable from each other.
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B. Performance results

For the performance analysis of the implementations presented here, only the matrix assembly, excitation vector calculation,
and computation of the unknown current coefficients (LU decomposition and subsequent solution of the linear system) are
considered – as discussed in Section II-B. Specifically, the relative performance of the CPU and CUDA implementations are
considered for the matrix assembly and current coefficient calculation phases. The performance results are obtained on a 2.2GHz
AMD Opteron 275 with 16GB of RAM, and a NVIDIA GTX 280 with 1GB of on-board memory for the CPU and CUDA
results respectively. All timings are performed at the last common point between the CPU and the CUDA implementations,
and thus include the time required to transfer data to and from the device in the case of the CUDA implementation. For the
linear system solution phase, the single-core implementations of the AMD optimised BLAS and LAPACK routines provided
by the AMD Core Maths Library (ACML) are used. It should be noted that in addition to the performance measurements for
each of the CUDA runs, the relative error in the current coefficients was calculated and found to be to the order of numeric
precision.

As an introduction to the relative importance of these phases consider Figure 10, which shows the percentage of the combined
time required for each of the phases as a function of the number of degrees of freedom considered. From the graph it is clear
that for the problems considered here (a square PEC plate with 64 to 7701 degrees of freedom) the matrix assembly phase
accounts for the majority of the execution time. The solution of the linear system accounts for most of the rest of the execution
time, although it does become more important as the problems get larger. This should further justify their selection as targets
for GPU acceleration as presented here.

Since the matrix assembly phase is the dominant factor in the execution time, the acceleration thereof will offer the most total
application speedup. If the CPU version of the matrix assembly routine is replaced with the CUDA version in the solution
process the distribution of the execution times of the phases change as indicated in Figure 11. The CUDA implementation is
clearly significantly faster as the relative contribution of the matrix assembly phase is now less than 15% for all the problem
sizes considered. The effect of this acceleration in absolute terms is investigated at the end of this section.

An additional result of the acceleration of the matrix assembly phase is that the solution of the linear system as in (1) to find
the unknown current coefficients now dominates the computational process. If the CUDA implementation of this (discussed in
Section III) is also included, the relative distributions of execution time once again changes with the new distribution shown
in Figure 12. Since the speedup of the solution of the linear system was not as great as in the case of the matrix assembly
phase, the solution of the linear system still contributes the most significantly to the total execution time, and would be a good
candidate for further acceleration.

Although the relative performance of the various methods is helpful in driving optimisation decision, one requires an ab-
solute measure to properly evaluate the success of the accelerated implementation. To this end, the speedup of the CUDA
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Fig. 8. A recreation of Figure 6 from [14] showing the normalised current density magnitude along the two cut lines in Figure 7. Results from [14] along
with results computed using FEKO and the two implementation discussed here are presented.
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Fig. 9. The computed normalised radar cross section of the square plate shown in Figures 7 and 1 as a function of angle θ (φ = 0). Results computed using
FEKO as well as the CPU and CUDA implementations discussed here are shown.

Solving for current coefficients
(LU + backward substitution)

Impedance matrix assembly

Calculating the excitation vector

Fig. 10. The relative contribution of the three timed phases in the solution process as a function of the number of degrees of freedom in the mesh. The
problem shown in Figure 7 is solved using the CPU implementation.

implementation over the CPU implementation, SCUDA, is defined as

SCUDA =
tCPU

tCUDA
, (10)

with tCPU and tCUDA the execution time of the CPU and CUDA implementation respectively. Figure 13 show various speedup
curves calculated using this definition. The matrix assembly (•) and system solve (�) curves in Figure 13 show the measured
speedup for the individual phases of the solution process. The matrix assembly is about 150× faster on the GPU than on the
CPU with the solution of the linear system up to 12× faster for the range of problem sizes considered. The speedup for the
linear system solution phase agrees with the results published in [19] where random input data was considered.

The final two curves in Figure 13 show the total speedup measured for the combined runtime of the three phases considered
here. The first of these (�) is the measured speedup when only the matrix assembly phase is replaced with the CUDA
implementation (as in Figure 11). In this case the speedup is limited by them amount of time required for the linear system
solution phase, thus the speedup drops as the contribution increases as shown in Figure 10. If the acceleration of the solution
of the linear system is included, a speedup of about 40× is attained as shown by the final curve (–).

VI. CONCLUSION

This paper has shown how the methods discussed in two prior works by the authors, [18] and [19], can be combined to provide
a complete solution for the GPU acceleration of the method of moments in computational electromagnetics. In addition, more
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Solving for current coefficients
(LU + backward substitution)

Impedance matrix assembly

Calculating the excitation vector

Fig. 11. The relative contribution of the three timed phases in the solution process as a function of the number of degrees of freedom in the mesh. The
problem shown in Figure 7 is solved using a CPU implementation with the only matrix assembly phase performed using CUDA.

details on the implementation of these methods have been presented - with the aim of assisting readers interested in implementing
their own GPU-enabled codes. The specific attention paid to the interaction, and more importantly code sharing, between the
CPU and CUDA-based implementations of the matrix assembly phase of the method aims to provide further insight into how
existing codes may be adapted for GPU computation.

The results shown further emphasise the fact that for a process such as the method of moments, it is not sufficient to consider
each of the phases in the solution process independently - especially from a performance point of view. This has clearly been
shown by the poor combined speedup performance if only the matrix assembly phase is accelerated. It was also found that the
speedups achieved in each of the phases translate into a combined speedup of more than 40× for complex double precision
calculations, which greatly reduces the time required to obtain a solution.

One thing to point out is that the current implementation is limited by the amount of memory available on the GPU, and as
such results are only shown for problems up to 7701 degrees of freedom. Although the CUDA-based LU decomposition as
presented in [19] is implemented in such a way so as to overcome this limitation, the matrix assembly routine is not and this
shortcoming is currently being addressed. The plan is to implement a blocking strategy similar to that of [9] for the matrix
assembly phase and this is not expected to have too much of an impact on the performance of the phase.

Although the use of shared memory is not discussed explicitly in this paper, the impact on the performance of the matrix
assembly routines is expected to be negligible as there is very little data that can be shared between the treads of a block. This

Solving for current coefficients
(LU + backward substitution)

Impedance matrix assembly

Calculating the excitation vector

Fig. 12. The relative contribution of the three timed phases in the solution process as a function of the number of degrees of freedom in the mesh. The
problem shown in Figure 7 is solved using the CUDA implementation.
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Fig. 13. The measured speedup of the matrix assembly (•) and solution of the linear system (�) as a function of the number of degrees of freedom. The
combined speedup (–) as well as the speedup when only the matrix assembly phase is accelerated (�) is also shown. A logarithmic scale is used on the
vertical axis for better comparison.

is in contrast to the LU decomposition where shared memory is used to greatly improve the performance of matrix-matrix
multiplication which forms an integral part of the process [26]. One way to improve performance may be to use automatically
cached texture memory to store often used data such as mesh and geometric data.

In this paper, the CUDA acceleration of only two of the phases of the method of moments solution process have been addressed
and timing results of a third phase, the calculation of the source vector, presented. Although this third phase was found to not
contribute significantly to the total runtime of the system, the initialisation phase as well as the post processing phase may
also account for a sizeable portion of the time required to obtain a solution. As such it may be fruitful to investigate their
acceleration on GPUs.

Although CUDA is one of the foremost technologies in the field of GPU computing, there are other competing technologies
available. One of the most interesting of these is OpenCL which promises compatibility with GPUs from various vendors as
well as multi-core CPUs and other accelerating technologies. This is very attractive from a developer’s point of view as it
means that code can run on a wide range of systems without requiring additional development time. A continuation of this
research may then be the adaptation of these methods to OpenCL, although this is encumbered by the lack of libraries such
as MAGMA for this platform.

Even when only CUDA is considered, there are a number of points that can still be addressed. The first of these is the extension
of these methods to make use of multiple CUDA devices installed in a given system. This is of particular importance in the
high performance computing segment where units such as a Tesla S1070 [37] or S2070 [38] are often installed – with each
providing four CUDA devices.
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