
An introduction to PGMs: Bayes Nets JA du Preez

PGMs session 2 Representation: Bayes Nets

In our context Bayes network, Bayesian network and belief network (BN) are equivalent terms and different authors

have different preferences. Because a Bayes net can employ either a frequentist or Bayesian approach to proba-

bility, I prefer to instead reserve the Bayesian denotation for things that truly follow that approach to probability

theory. More about this later in the course.

1 Preparation: Watch the Koller videos on Bayes Network Fundamentals

Watch the following videos in the Coursera course Probabilistic Graphical Models 1: Representation, Week 1:

• Bayesian Network Fundamentals: Semantics & Factorization (17:20)

• Bayesian Network Fundamentals: Reasoning Patterns (9:59)

• Bayesian Network Fundamentals: Flow of Probabilistic Influence (14:36)

• Bayesian Networks: Independencies: Conditional Independence (12:38)

• Bayesian Networks: Independencies: Independencies in Bayesian Networks (18:18)

• Bayesian Networks: Independencies: Naı̈ve Bayes (9:52)

• Bayesian Networks: Knowledge Engineering: Application - Medical Diagnosis (9:19)

• Bayesian Networks: Knowledge Engineering: Knowledge Engineering Example - SAMIAM (14:14) (op-

tional)

Comments on the videos:

• Bayesian Network Fundamentals: Semantics & Factorization (17:20) explains how a joint distribution,

expressed as a product of factors, can equivalently be represented by a directed acyclic graph (DAG) termed a

Bayes net (BN). Although not a requirement, we typically implement the direction of the edges to correspond

with causal relationships. We do so because this makes the parameters more intuitive to estimate, and the

graph easier to interpret.

• Bayesian Network Fundamentals: Reasoning Patterns (9:59) through Bayesian Networks: Independencies:

Independencies in Bayesian Networks (18:18) explains how in a BN you can directly see which variables

affect which. Note:

– The idea of conditional independence is important.

– You will also see that in some cases, observing a variable (i.e., it appears on the right hand side of a

conditional) can cause some other variables to become conditionally independent, while in other cases

it can cause them to become conditionally dependent. You will see that ‘V-shaped’ nodes (Barber

calls them ‘colliders’, some other sources call them ‘head-to-head’ nodes) behave differently from the

others. All of this culminates in the concept of d-separation.

– Note that all the independencies that the structure of the graph G implies, must hold in the distribution

P for G to be an I-map of P . However, there may be extra independencies in P that is not visible in

the structure of G.

• Bayesian Networks: Independencies: Naı̈ve Bayes (9:52) discusses a set of very commonly used simplifying

assumptions, known as the naı̈ve Bayes assumptions, and how it is represented via a BN.
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• Bayesian Networks: Knowledge Engineering: Application - Medical Diagnosis (9:19) discusses a historical

progression of medical diagnosis systems which played an important role in the development of modern

BNs. Note how the initial rule-based expert system approaches (typical of the AI thinking in those days)

became more and more probabilistic in nature, ultimately developing into BN modelling.

• Bayesian Networks: Knowledge Engineering: Knowledge Engineering Example - SAMIAM

(14:14) discusses a BN toolbox called SAMIAM that you can download from the web at

http://reasoning.cs.ucla.edu/samiam/index.php. You can use this to double check your

results in the exercise below. However, for the moment rather focus on the examples here that illustrate

“flow-of-influence” of variables in different configurations. This video is optional.

2 Preparation: Read Barber Chapter 2 – basic graph concepts

PGMs combine probability theory with graph concepts. This chapter covers basic graph concepts – if you are not

familiar with them, then read Section 2.1 to 2.3.

3 Preparation: Read Barber Chapter 3 – belief networks (BNs)

This chapter mainly covers the same work as in the videos above, with possibly different formulations.

• As we have already seen last week, a distribution can be represented as a product of factors.

• On a given path, ‘colliders’ (aka ‘v-structures’, aka ‘head-to-head’ nodes) behave differently from other

types of nodes. Also note that a node can be a collider on one path while not being so on another path.

• From these we get to the concept of d-separation which enables us to easily determine conditional indepen-

dencies in a graph.

• Look carefully at the section on Markov equivalence – discussing when two graphs can represent the same

set of independencies. They have to share the same ‘skeleton’ and the same set of ‘immoralities’. Note the

relationship between ‘collider’ nodes and immoralities.

• Once again, note that while certain independencies follows necessarily from the structure of the graph G,

there may be additional independencies resulting from the values of the distribution itself.

• Section 3.4 (Causality), although interesting, is optional. Judea Pearl (from whose work much of graphi-

cal models arose), is advancing an alternative to probability theory that explicitly takes interventions into

account. Read his book ‘Causality’ if you want to follow this up.

4 Practical: Code the flow of influence in the Monty-Hall problem

4.1 Background

For this one we are going to consider the well-known Monty-Hall problem. Let’s first state the original problem:

In a TV game show, a participant must choose between one of three doors. Behind one of the doors there is an

expensive car; the other two conceal somewhat smelly goats. The participant indicates a certain door, after which

the game-show host (Monty Hall) reveals a goat behind another door. You can assume that the host will never at

this stage open the initial choice of the participant or the door with the car. Except for this, he has no preference

for any specific door. The participant may now reconsider his choice. Under the assumption that he actually wants

to win the car, should he stick with his original choice or should he change to the other remaining door?

Model the above situation with a BN. Use three random variables:

1. I is the initial choice of the participant – it takes on values 0, 1 or 2 depending on his door of choice.

2. C is where the car is – once again it takes on values 0, 1 or 2 depending on where the car actually is.
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3. M is the door that Monty opens – once again it takes on values 0, 1 or 2.

If we reason causally, then it should be clear that the initial choice I and the location of the car C are not influenced

by any other RVs, and the door that Monty opens, M , is influenced by both I and C. An appropriate Bayes net

structure is therefore I →M ← C. Another way of getting to this same structure is to use the general factorisation

p(M, I,C) = p(M |I, C)p(C, I), (1)

and then realise that the location of the car C is independent of the initial choice I , so we can say that p(C, I) =
p(C)p(I). The Bayes net structure I →M ← C and the factorisation p(M, I,C) = p(M |I, C)p(C)p(I) encode

the same independence assumption. To define this network, we now have to set up the distributions p(I), p(C),
and p(M |I, C). The last one, p(M |I, C), is the tricky one to set up – carefully include all the considerations that

Monty have to keep in mind when doing so.

4.2 Solve the Monty-Hall problem

With this in place you can now easily answer the basic Monty-Hall question with emdw using the factor definitions

and factor operations introduced in the previous practical. Pick an initial choice (e.g. I = 0) and a (valid) door that

Monty opened (e.g. M = 1) via the observe/reduce operation to get P (C|, I = i,M = m). That should tell you

that it is better for the player to switch to the other door. Trivial. With that out of the way, lets more specifically

focus on the concept of flow of influence.

4.3 Flow of influence via collider nodes

Use your code of Question 4.2 and the factor operations introduced in the previous practical to investigate the

following using emdw.

(a) The path I →M ← C forms a collider node at M . It is now easy to investigate various scenarios about the

probabilistic dependence between I and C given that M is either unobserved or observed.

• Set I to one of its allowed values, while leaving the other variables unobserved. Does this change the

marginal belief over C? What is your conclusion about the dependence (or not) of C on I when M is

unobserved?

• Set M to one of the values it can take on, while leaving the other variables unobserved. Find the

marginal belief over C. Now, with M still on the value you chose, set I to one of the two remaining

values it can legally take on. Does this change the marginal belief over C?

• Do the above in the opposite direction by setting a value for C and observing what it tells us about the

distribution of I , for the cases where M is observed vs. unobserved.

(b) Let’s make things slightly more complex. The game remains more or less as it was, but we are now being

prevented from observing M directly. Instead, we get to observe a variable R that (unreliably) reports which

door Monty opened. This will introduce a node R and a single edge M → R to the Bayes net (since R is

influenced by M , but conditionally independent of I and C given M – can you see it?) Define the factor

p(R|M) such that we have a 50% chance that R will report the correct value of M , and 25% chances that it

will (erroneously) report one of the other two values for M . Repeat (a), but now with R observed/unobserved

instead of M (which now is not being observed directly). What are your conclusions, and do they correspond

to the theory of d-separation?

(c) Can you specify other equivalent networks by reversing the direction of some of the arrows?

(d) What happens to C when you set the observed value of R to be the same as I? What is the sense behind

this?

4.4 Flow of influence via non-collider nodes

The path from I → M → R forms a head-to-tail node at M . It is now easy to investigate various scenarios about

the probabilistic dependence between I and R given that M is either unobserved or observed.

3



An introduction to PGMs: Bayes Nets JA du Preez

(a) Set I to one of its allowed values, while leaving the other variables unobserved. Does this change the

marginal belief over R? What is your conclusion about the dependence (or not) of R on I when M is

unobserved?

(b) Set M to one of the values it can take on, while leaving the other variables unobserved. Find the marginal

belief over R. Now, with M still on the value you chose, set I to one of the two remaining values it can

legally take on. Does this change the marginal belief over R?

(c) Do the above in the opposite direction by setting a value for R and observing what it tells us about the belief

over I , for the cases where M is observed vs. unobserved.

NOTE: We have not investigated tail-to-tail non-collider nodes. Their influence blocking behaviour is the same as

that of head-to-tail nodes.
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