
1

Driving and Extending Legacy Codes using Python
Neilen Marais

Department of Electrical and Electronic Engineering
University of Stellenbosch, South Africa

email: nmarais@gmail.com

Abstract: Software Engineering aspects in Computational
Electromagnetics (CEM) are becoming more important as
the complexity of CEM codes continue to increase. Object
orientated programming (OOP) methods promise to alleviate
the challenges posed by more complex software systems, but
offers little help for legacy codes. Python, an object-oriented
very high level language (VHLL), can be used to extend
legacy codes. It provides the dual benefit of a very productive
programming environment and of enabling legacy codes to
be migrated to object orientated designs with low risk. The
application of this method is described in the context of
eMAGUS, a microwave Finite Element Method code.

Keywords: Object Orientated Design, Python, Fortran,
Finite Element Method

I. INTRODUCTION

The purpose of Computational Electromagnetics (CEM) is
the numerical solution of EM problems, but the end product of
CEM development itself is software. As such, good software
engineering principles should be an important tool in the CEM
worker’s toolbox. However, the mathematical and electromag-
netic insight required for CEM has traditionally overshadowed
the importance of the software aspects.

On the other hand, the software complexity of CEM codes
continues to increase thanks to several factors. The solution of
progressively more general problems require complex software
interactions. The full-wave solution of ever larger problems
require more sophisticated field modelling and more effective
solution strategies. The unsustainability of historic single CPU
performance growth (Fig. 1)1 is forcing the adoption of parallel
methods, along with the increased complexity they bring. At
the same time, users are demanding better solution accuracy
while geometries are simultaneously becoming more complex,
necessitating more flexible geometry handling. These trends
have lead to software engineering aspects becoming quite
important to CEM workers.

In this paper, the use of Python to extend the microwave
Finite Element Method (FEM) code, eMAGUS, is discussed.
eMAGUS and its predecessors has been developed by the
Computational Electromagnetics Group (CEMAGG) [1] at
the University of Stellenbosch over almost a decade, and is
coded in Fortran 90. It is shown how existing code and data
structures can be utilised and extended with Python, and what
the advantages are.

1Last data-point added by the authors.

Fig. 1. Maximum Intel CPU speed vs. Time

II. CEM DEVELOPMENT PRACTICE

Most numerical computation has traditionally been done in
Fortran, particularly Fortran 77 (F77), which is arguably ar-
chaic as far as language features are concerned. More recently,
Fortran 90 (F90), C and C++ have become more popular.
While F90 and C both have their respective advantages, neither
are well suited to the use of more modern software paradigms.
C++ is certainly capable in this regard, but presents a rather
steep learning curve.

Regardless of a particular language’s merits, it is of no use
if existing code is written in another language. Investments
in old code are often considerable. Even if a new language
were guaranteed to boost productivity significantly, the cost,
and perhaps more significantly, risk involved in either porting
or re-implementing a code can be very unattractive.

The use of very high-level languages (VHLL) such as
Python [2], Ruby [3] and Perl [4] have shown promise as
a means of moving existing codes forward without taking
the risk of a full re-implementation. At first glance, these
languages may seem unattractive for numerical computation,
since VHLL execution speed may be too slow. However, most
VHLLs can interface with compiled libraries for speed critical
loops, while some provide additional means of speeding up
critical code sections.

III. MODERN DEVELOPMENT METHODS

Software development is challenging at best, but using
appropriate techniques can ease the process. Compared to
older procedural techniques, the appropriate use of Object
Oriented Programming (OOP) [5] can make software easier to

2

maintain and extend; this becomes more apparent as software
complexity increases.

Test Driven Development (TDD) [6] is a young technique
that is rapidly gaining popularity. While testing has always
been part of software development, it is usually seen an
additional step. In TDD, testing is an integral part of the design
and coding process.

The basis of TDD is to develop fine grained automated
unit tests [7] before writing the actual implementation. Test
development thus forms part of the design process, often
preventing design mistakes at the earliest possible moment.
Implementation code is written and the tests continually re-
run until the tests are satisfied. Higher level functional tests
can also be added as the need arises.

Tests and new code are usually added in an incremental
fashion, interspersed with code and design refactoring. Refac-
toring is critical to keep code manageable as its complexity
grows, but carries the risk of introducing new bugs. Unit tests
are invaluable when refactoring since they show up new coding
errors almost as soon as they occur.

TDD may seem inefficient since it introduces the extra
work of developing tests, but the efficiencies gained from
the reduction in subtle bugs, improved design and ease of
refactoring handsomely repays the time invested in writing
tests. Since test development is part of the design process, the
amount of time spent doing traditional design is also reduced.

To be effective, both OOP and TDD depend critically on
language or tool-chain support. While it is possible use OOP
concepts in a language with no specific support, it would be
error prone and involve much extra work. Similarly TDD is
infeasible without tools that automate the tests and make it
easy to locate test failures.

IV. PYTHON AND NUMERIC COMPUTING

Python is a modern object orientated VHLL featuring
exceptionally clear syntax and powerful language features. It
is both easy to learn, and a very productive environment for
expert users. Features like automatic memory management,
high level data types and extensive, freely available software
libraries allow very rapid development, and much shorter code
than that of an equivalent program written in e.g. C++ or
Fortran. This combined with its free and open source licencing
makes Python attractive for most any task.

Python has always had a C language API, allowing the
extension of Python modules such that it is transparent (i.e.
appears to be part of the Python environment) to the Python
user, at the expense of extra work for the C programmer. More
recently, automatic Python wrapper generators such as SWIG
[8] and F2PY [9] have made it quite painless to extend Python
using new or existing code written in compiled languages such
as C, C++ and Fortran.

Python’s ability to wrap existing code led to standard
computational libraries such as LAPACK [10] and FFTPACK
[11] along with fast array and matrix handling becoming
available through the Numerical Python [12] package for
Python. The Numerical Python work has since been merged
and extended by the SciPy [13] project. An active developer
and user community has built around SciPy.

MODULE DATA
IMPLICIT NONE

REAL, DIMENSION(5) :: test_arr

END MODULE DATA

MODULE prog
USE data
IMPLICIT NONE

CONTAINS

SUBROUTINE init_data()
! Initialise the array
test_arr = (/1,2,3,4,5/)

END SUBROUTINE init_data

SUBROUTINE process_data(factors, n)
REAL, DIMENSION(n), INTENT(in) :: factors
INTEGER, INTENT(in) :: n
INTEGER :: i
DO i = 1,n

test_arr = test_arr - (-1)**i &
* test_arr**factors(i)

END DO
END SUBROUTINE process_data

END MODULE prog

Fig. 2. Example F90 code

Building on SciPy, the iPython [14] interactive shell and the
Matplotlib [15] Pylab mode make for comfortable interactive
use in the style of MATLAB (R), while keeping the full ca-
pabilities of a general language and its libraries available. The
recent addition of iterative and direct sparse matrix solvers to
SciPy makes it well suited for FEM codes. Worked examples
of several real numerical problems and links to other useful
Python software is on the website of the Python4Science
Workshop [16] that was recently held at Stellenbosch.

V. WRAPPING FORTRAN 90

F2PY is an automated Python wrapper generator for F77
and F90. It has comprehensive support for F77 language
features. It can automate many of the low level details F77
subroutine calls usually require such as determining the size
of arrays. It also supports F90 module data and subroutines,
but does not have direct support for derived types and assumed
size dummy arguments at this time. Both limitations can be
overcome by the addition of some simple wrappers to the
Fortran code.

Assuming iPython and F2PY are set up, and that Intel’s
Fortran compiler is being used in a UNIX environment, the
code in Fig. 2 can be compiled into a Python module by
issuing:

$ f2py --fcompiler=intel -m testmod \
-c test_data.f90 test_prog.f90

The -m test flag specifies the Python module name
as testmod. The -c test_data.f90 test_prog.f90
flag specifies the Fortran source files to be wrapped and
compiled. Now we can manipulate the data and call the Fortran
routines from the iPython shell.

3

$ ipython -pylab
...
Welcome to pylab, a matplotlib-based Python
environment.
For more information, type ’help(pylab)’.

In [1]:import testmod
In [2]:testmod.data.test_arr
Out[2]:array([0., 0., 0., 0., 0.])
In [3]:testmod.prog.init_data()
In [4]:testmod.data.test_arr
Out[4]:array([1., 2., 3., 4., 5.])
In [5]:testmod.prog.process_data([1,2])
In [6]:testmod.data.test_arr
Out[6]:array([-2.,-12.,-30.,-56.,-90.])

In [x] represents the x’th user input and Out [x] the
x’th output from the iPython shell. In [1] loads the Python
module created by F2PY. In [2] causes the value to be
printed. Note how a new namespace is assigned for each
module, in contrast to the F90 norm of importing all symbols
into the current namespace. In [5] shows how the length
parameter is automatically passed to the Fortran routine.

A. Numpy Arrays vs. Python Lists

Python has a built in list type that is optimised to store
dynamic lists of heterogeneous types. Python lists are incredi-
bly useful, but are not well suited for numerical computation;
they use memory and CPU inefficiently when they are used to
store homogeneous collections and support multi-dimensional
arrays only as lists of lists.

The numpy.ndarray type is optimised for numerical
computation involving homogeneous multi dimensional arrays
such as matrices. F2PY uses ndarrays to encapsulate the
Fortran data structures. Python lists and ndarrays behave
very similarly with some notable exceptions described below,
where ndarray behaviour is designed to benefit numerical
computing above general computing.

$ ipython
...
In [1]:import numpy

Here we have imported the numpy module. By prepending
“numpy.”, all numpy’s functions, variables and classes can
be accessed.

In [2]:nd_array=numpy.array([1,2,3])
In [3]:p_list = [1,2,3]

Multiplying an ndarray by a scalar n does element-wise
multiplication, whereas it replicates a list n times:

In [4]:nd_array*3
Out[4]:array([3, 6, 9])
In [5]:p_list*3
Out[5]:[1, 2, 3, 1, 2, 3, 1, 2, 3]

Adding two ndarrays result in element-wise addition,
while adding two lists concatenates them:

In [6]:nd_array+nd_array
Out[6]:array([2, 4, 6])
In [7]:p_list+p_list
Out[7]:[1, 2, 3, 1, 2, 3]

ndarray subtraction, multiplication and division works
like addition, while lists do not support those operations:

In [8]:nd_array-nd_array
Out[8]:array([0, 0, 0])
In [9]:p_list-p_list
TypeError: unsupported operand type(s) for -:

’list’ and ’list’

ndarrays support array addressing, lists not:
In [10]:nd_array[[0,2]]
Out[10]:array([1, 3])
In [11]:p_list[[0,2]]
TypeError: list indices must be integers

However, lists support arbitrary data types:
In [12]:p_list=[1, 3.14159, "hello"]

while ndarrays must be homogeneous. We specified 8-
bit integers, but strings and floating point numbers cannot be
converted to integers without loss of precision:
In [13]:nd_array=numpy.array([1, 3.14159, "hello"],

numpy.int8)
TypeError: an integer is required

There is a fundamental difference between how Python lists
and ndarrays treat multi-dimensional arrays. Such arrays are
trivially handled with an ndarray:
In [28]:nd_matrix=numpy.array([[11, 12],

[21, 22]])
In [29]:nd_matrix[0,0]
Out[29]:11
In [30]:nd_matrix[1,1]
Out[30]:22
Second Column
In [31]:nd_matrix[:,1]
Out[31]:array([12, 22])
Second Row
In [32]:nd_matrix[1,:]
Out[32]:array([21, 22])

Python lists are always one-dimensional, but can store lists
as elements. A matrix can be stored as:
In [32]:p_list_matrix = [[11, 12],

[21, 22]]

Repeated application of the [] operator can be used to
obtain any element:
In [24]:p_list_matrix[0][0]
Out[24]:11
In [26]:p_list_matrix[1][1]
Out[26]:22

However, one runs into trouble trying to obtain a column:
In [27]:p_list_matrix[:][1]
Out[27]:[21, 22]

Instead of returning the second column as expected, it re-
turns the second row. This is because p_list_matrix[:]
refers to the whole outer list, and its second element is a list
containing the second row.

VI. EXTENDING EMAGUS

eMAGUS (formerly known as FEMFEKO [17, pp. 350]) is
a research microwave FEM code developed by the CEMAGG
group at Stellenbosch University over the last decade. It is
chiefly used for research in FEM methods, and is coded in
F90. eMAGUS contains many well tested routines that can be
re-used when trying new techniques, though its code structure
is somewhat specialised to frequency domain work.

4

Applying OOP and TDD to eMAGUS is becoming increas-
ingly attractive as its complexity increases, but F90 lacks the
language features to do so cleanly and easily. One option
would be a rewrite from scratch, but such a move is always
risky. F90 wrappers for Python provide a way of moving
forward without the associated risk.

Python language features can be used to encapsulate the
existing program structure in an OO framework piece by piece.
New code can be written in Python using the OO structure, or
in F90 and wrapped. New code can even be written in another
compiled language (e.g. C++) using SWIG to integrate it with
the main Python program. If replacing existing F90 routines
with Python equivalents become desirable, it is a boon to have
the known-good F90 implementations to compare results with.

Performance critical code sections can be kept in F90, or
written in another compiled language at only a small cost
in flexibility. Since the overall program structure would be
defined in Python, the effect of specialised compiled modules
on the overall design will be localised. Another possibility is
to treat the Python code of performance critical sections using
tools like Weave [18] and Pyrex [19].

Following this method, the code is gradually moved to a
flexible and easily extensible OO design. Useful code built
up over the years can be re-used, and at no time will the
code be unusable. This means new development and research
could happen in parallel to the modernising of the code
structure, avoiding the case of two divergent code trees. Using
a distributed version control system such as Bazaar-ng [20] or
GNU Arch [21] to keep track of simultaneous development
may also be helpful.

Wrapping eMAGUS with F2PY provides several immediate
benefits:

• Python’s extensive use of namespaces allows the re-use
of eMAGUS routines without dictating the structure of
the new code.

• New methods are developed much faster owing to the use
of a VHLL.

• Interactive simulation and plotting with scripting capabil-
ities become a possibility.

• Readily available Python libraries can be used for many
purposes, like plotting, model visualisation and data IO
in various formats.

• The availability of several matrix solution modules with
minimal extra coding requirements.

The primary author is undertaking research into Finite
Element Time Domain (FETD) methods [22]. F2PY wrappers
are used to access the mesh processing and curl-conforming
basis function and field-reconstruction routines from eMA-
GUS, while new code is written using the core SciPy array
data-types and numerical libraries.

VII. EXAMPLE OF WRAPPING EXISTING F90 FEM CODES

The central data-structure in a FEM code tends to be the
mesh. In Fortran codes the mesh is often represented by a
series of arrays representing the node coordinates, the node
indices that define the elements and similar arrays for other
mesh entities such as faces and edges. Using Python proxy

MODULE mesh
! The x,y,z coordinates of each node in the mesh
REAL(8), DIMENSION(:,:), ALLOCATABLE &

:: node_coordinates
! The 4 node indices per element that define all
! the mesh elements
INTEGER, DIMENSION(:,:), ALLOCATABLE &

:: element_nodes
CONTAINS
SUBROUTINE init_mesh()

ALLOCATE(node_coordinates(3,5))
node_coordinates(:,1) = (/-0.5, 0.5, -0.5/)
node_coordinates(:,2) = (/ 0.5, 0.5, 0.5/)
node_coordinates(:,3) = (/ 0.5, -0.5, -0.5/)
node_coordinates(:,4) = (/-0.5, -0.5, 0.5/)
node_coordinates(:,5) = (/-0.5, -0.5, -0.5/)
ALLOCATE(element_nodes(4,2))
element_nodes(:,1) = (/1, 2, 3, 4/)
element_nodes(:,2) = (/1, 3, 4, 5/)

END SUBROUTINE init_mesh
END MODULE mesh

Fig. 3. Simple Fortran Mesh Datastructure: mesh.f90

objects, an object oriented face can be put on the mesh without
modifying the underlying Fortran code.

A. Fortran Data Representation

A simple example of wrapping a basic tetrahedral
mesh element will be developed. A mesh element
is defined by its four vertex node coordinates. A
Fortran representation of this data is shown in Fig. 3

The code snippet element_nodes(:,1) refers
to the x, y and z coordinates of mesh node 1, and
element_nodes(:,2) = (/1, 3, 4, 5/) to
the four global node indices that define element 2. In a
real code, the mesh would be read from a file, but for this
example it is initialised to a simple two-element mesh using
the init_mesh() subroutine.

B. Python Proxy Object

Fig. 3 is wrapped into a Python module called
f90modules by the method described in Section V.
Within Python, the Fortran data arrays are now acces-
sible as f90modules.mesh.node_coordinates and
f90modules.mesh.element_nodes.

The desired design is show in in Fig. 4 All the information

Fig. 4. Schematic Representation of OO Mesh Design

pertaining to an individual element is collected together in an
element object. The mesh is represented as an ordered list of
element objects. The MeshElement class in Fig. 5 pulls the
separate data arrays together and allows the elements to be
addressed one by one.

5

class MeshElement(object):
def __init__(self, nodeCoords, elementNodes):

self.index = 0
self.numberof = len(elementNodes)
self._elementNodes = elementNodes
self._nodeCoords = nodeCoords

@property
def nodes(self):

return self._elementNodes[self.index] - 1

@property
def nodeCoords(self):

return self._nodeCoords[self.nodes]

Fig. 5. MeshElement Proxy Class

The statement class MeshElement(object): de-
rives MeshElement from the built in Python object type
that defines standard object behaviour. Note the indentation
of def __init__(...):. Python groups code blocks by
indentation rather than braces or begin/end clauses. A function
or method definition is started with def. The __init__()
method initialises a new object instance to a known state.

The first parameter of any method, called self by conven-
tion, is always passed a reference to the current object. self
is analogous to the this keyword in C++ and Java. In C++
and Java a method has implicit access to its object’s whole
namespace, making the use of this optional in most cases.
In Python an explicit self reference is always required. This
may seem onerous but in practice is effective at reducing the
occurance of subtle bugs.

Instantiating a MeshElement object as

meshElement = MeshElement(
node_coordinates.transpose(),
element_nodes.transpose())

results in the __init__(self, nodeCoords,
elementNodes) method being called with the self

parameter automatically bound to the new instance. The
transpose() method is used due to Fortran’s column major
storage convention; in Fortran programs it is more natural to
loop over multi-dimensional arrays by varying the first array
index the fastest, therefore the Fortran program stores one
node coordinate per column in node_coordinates and
one element’s node indices per column in element_nodes.

Python uses the C convention of row major storage which
means that multi-dimensional arrays are usually looped over
by varying the last index fastest. The transpose() method
does not copy the array, but returns a transposed “view” of
the array. This allows more natural (in Python) row-based data
access to be used without any overhead.

Also note that the meshElement instance does not
copy the node_coordinates and element_nodes ar-
rays, since Python, like Fortran, passes values by ref-
erence. If a copy is desired, the copy() methods of
node_coordinates and element_nodes can be called.

By setting meshElement.index, each mesh element can
be accessed in turn. Python always uses 0 based indexing,
so setting meshElement.index to 0 accesses the first
element, 1 the second and so forth.

We import the MeshElement class from the
MeshWrap.py file, and the Fortan mesh module from the
Fortran wrappers. The import statements are explained in
Section VII-F.

$ ipython
...
In [1]:import MeshWrap
In [2]:from f90modules import mesh

The Fortan mesh is initialised by calling init_mesh(),
and a copy of MeshElement instantiated using the mesh
data from the Fortran mesh.

In [3]:mesh.init_mesh()
In [4]:meshElement=MeshWrap.MeshElement(

...:mesh.node_coordinates.transpose(),

...:mesh.element_nodes.transpose())

By setting meshElement.index to 0, we can access the
first mesh element,

In [5]:meshElement.index=0
In [6]:meshElement.nodes
Out[6]:array([0, 1, 2, 3])
In [7]:meshElement.nodeCoords
Out[7]:array([[-0.5, 1. , -0.5],

[0.5, 0.5, 1.],
[1. , -0.5, -0.5],
[-1.5, -0.5, 0.5]])

and setting meshElement.index to 1, we access the
second.

In [8]:meshElement.index=1
In [9]:meshElement.nodes
Out[9]:array([0, 2, 3, 4])
In [10]:meshElement.nodeCoords
Out[10]:array([[-0.5, 1. , -0.5],

[1. , -0.5, -0.5],
[-1.5, -0.5, 0.5],
[-0.5, -1.5, -0.5]])

C. Proxy Object Explained

Fortran array indices are 1-based by default, i.e.
fortran_array(1) refers to the first element of the array,
whereas Python indices are always zero-based, meaning that
when wrapping Fortran codes, indices such as the element
node numbers cannot be shared directly. Since we do not want
to modify the Fortran data, the -1 is added in the nodes()
method of class MeshElement.

In the example meshElement.nodes() and
meshElement.nodeCoords() methods were used
without () as if they were data members rather than method
calls. This is thanks to the @property statement preceding
the method definition:

@property
def nodes(self):

return self._elementNodes[self.index] - 1

The @ notation forms what is called a decorator in Python.
The @property decorator turns the nodes() method into
a getter function for the data attribute nodes. This also
has the side effect of making nodes read only, since no
setter function is specified. While not treated here, it is also
possible to define a setter function that could be used to convert
between zero and one based indices.

6

class MeshElementList(object):
def __init__(self, element):

self.element = element
self.numberof = element.numberof

def __getitem__(self, index):
self.element.index = index
return self.element

def __len__(self):
return self.numberof

def __iter__(self):
for i in xrange(self.numberof):

self.element.index = i
yield self.element

Fig. 6. List Proxy Code

D. Python List Proxy

While the proxy object described in Section VII-B is
directly usable, manually updating the index is tedious and
error-prone. Fortunately it is very easy to overload the Python
list syntax list[index]. The MeshElementList class
show in Fig. 6 achieves this.

The __init__() method should self explanatory. Defin-
ing a __getitem__() method allows any object to handle
the Python subscript operator []. Python simply passes what-
ever was inside the square brackets into the __getitem__()
method. The __len__() method is called whenever the
length of an object is requested as len(object). This
allows:

In [11]:meshList = MeshWrap.MeshElementList(
meshElement)

In [12]:meshList[0].nodes
Out[12]:array([0, 1, 2, 3])
In [13]:meshList[1].nodes
Out[13]:array([0, 2, 3, 4])
In [14]:len(meshList)
Out[14]:2

The __iter__() method allows Python’s looping con-
structs to iterate over the elements without explicitly indexing
them. With __iter__() defined to return an appropriate
iterator, we can write:

In [15]:for el in meshList:
....: print el.nodes
....:

[0 1 2 3]
[0 2 3 4]

The MeshElement class would also need an
__iter__() method to handle looping over a subset
of the elements. Iterators are a very attractive Python
language feature; the reader is referred to the Python
documentation [23], [24] for more details.

E. Extending the Proxy Object

The basic mesh proxy class can easily be extended using
standard Python class inheritance. The MyMeshElement
class shown in Fig. 7 is derived from the MeshElement
class. It inherits all the attributes and methods from
MeshElement class, and is extended by adding the

volume() method. We can still use the original
MeshElementList to hold MyMeshElement, since
the behaviour inherited from MeshElement satisfies
MeshElementList’s requirements:

In [20]:import MyMeshWrap
In [24]:myMeshElement = MyMeshWrap.MyMeshElement(
....:mesh.node_coordinates.transpose(),
....:mesh.element_nodes.transpose())
In [28]:myMeshList=MeshWrap.MeshElementList(

myMeshElement)
In [29]:myMeshList[0].volume()
Out[29]:1.0625
In [30]:myMeshList[1].volume()
Out[30]:0.625

F. Code Organisation

The code as presented is organised in three files:
mesh.f90 (Fig. 3), MeshWrap.py (Fig. 8) and
MyMeshWrap.py (Fig. 7). The Python import statement
loads code from other files as modules. Each module has its

import MeshWrap
from numpy import linalg
class MyMeshElement(MeshWrap.MeshElement):

def volume(self):
el_coords = self.nodeCoords
matr = [el_coords[0]-el_coords[1],

el_coords[1]-el_coords[2],
el_coords[2]-el_coords[3]]

return abs(linalg.det(matr))/6

Fig. 7. MyMeshElement source, extending MeshElement through inheri-
tance: MyMeshElement.py

class MeshElement(object):
def __init__(self, nodeCoords, elementNodes):

self.index = 0
self.numberof = len(elementNodes)
self._elementNodes = elementNodes
self._nodeCoords = nodeCoords

@property
def nodes(self):

return self._elementNodes[self.index] - 1

@property
def nodeCoords(self):

return self._nodeCoords[self.nodes]

class MeshElementList(object):
def __init__(self, element):

self.element = element
self.numberof = element.numberof

def __getitem__(self, index):
self.element.index = index
return self.element

def __len__(self):
return self.numberof

def __iter__(self):
for i in xrange(self.numberof):

self.element.index = i
yield self.element

Fig. 8. MeshElement and MeshElementList in MeshWrap.py

7

own namespace. When using import SomeFile, the file
SomeFile.py is read. The definitions of SomeFile.py
is accessed by prepending “SomeFile.” to their names.
Using the form from SomeFile import name imports
name into the current namespace. This allows direct access
to name without “SomeFile.” being prepended.

VIII. OO WRAPPING ADVANTAGES

The advantages claimed for OOP often seem nebulous
without concrete examples. The wrappers discussed here are
fairly simple, but can serve to demonstrate some OO features.

A. Abstraction

Abstraction attempts to separate the abstract properties of a
piece of data or function from its concrete implementation
details. The rationale is twofold: by concentrating on only
the necessary abstract details when using an object, the pro-
grammer is freed from considering incidental details and can
work at a higher level; code using only the abstract properties
of a object is insulated from future changes in the concrete
implementation of this object.

In the MeshElement class the element’s node coordinates
is an abstract interface. In this case the node coordinates
are stored in a separate list and referenced by node indices,
however users of the nodeCoords property are insulated
from this detail, leaving them free to concentrate one more
important matters.

B. Encapsulation

Encapsulation attempts to hide the design decisions of a
computer program that are most likely to change behind a
stable interface. Users of the stable interface are thereby
insulated when the encapsulated design decisions change.
Deciding how to encapsulate often goes hand in hand with
choosing abstractions.

In Section VII-C we saw that it was necessary to turn the
one-based Fortran indices into zero-based indices for use in
Python. The use of zero- or one-based indices is an arbitrary
choice controlled by external factors. By fixing the Fortran
data to appear zero-based in the MeshElement.nodes
property, this choice is encapsulated.

The MeshElement.nodeCoords property used as an
example of abstraction in Section VIII-A is also an example of
encapsulation. If an element class chooses to store coordinates
directly, or even to calculate them based on e.g. some mesh
deformation, users of nodeCoords are not affected at all.

C. Inheritance

Inheritance is the process of constructing a new class by
inheriting behaviour and attributes from a pre-existing class.
The new class derives from the original base class, and is
therefore called a derived class. This is an effective way to re-
use code by factoring it into a base class that more specialised
classes derive from.

The MyMeshElement class derives from the original
MeshElement class, extending it with a volume() method.

Other classes could in turn inherit from the MyMeshElement
class to add more functionality. By using the encapsulated
nodeCoords interface, the volume() method is also
shielded from the concrete implementation of the node co-
ordinate storage.

D. Other Advantages

Wrapping existing code allows it to benefit from a number
of Python’s general strengths, such as its extensive libraries
and the ease of developing new features in Python. Python
includes a testing framework in its standard libraries, mak-
ing Test Driven Development(TDD) methods mentioned in
Section III practical. The use of TDD can be extended even
to Fortran code development by combining a Python test
framework with automatic F2PY wrapping of the Fortran code.

IX. CONCLUSION

With the help of automatic wrapper generators, it is easy
to access compiled code from within Python. Using F2PY to
wrap an existing Fortran 90 microwave FEM code and the
language features of Python, an object oriented interface is
layered on the original code. In addition to allowing code
extensions to benefit from object orientation and the syntactic
efficiency of Python, other advantages accrued from the envi-
ronment include: Interactive use facilitating experimentation;
easy employment of test driven development; the availability
of rich numerical, plotting and visualisation libraries; Python’s
strength as a general purpose language which is very useful
when interacting with the outside world. Additionally, the
risk of throwing away old code and rewriting from scratch
is avoided by wrapping it.

REFERENCES

[1] “University of Stellenbosch Computational Electromagnetics Group
home page,” Available: http://research.ee.sun.ac.za/cem/index.html.

[2] G. van Rossum et al., “Python,” Available: http://www.python.org.
[3] Y. Matsumoto et al., “Ruby,” Available: http://www.ruby-lang.org/en/.
[4] L. Wall et al., “Perl,” Available: http://www.perl.org/.
[5] G. Booch, Object-Oriented Analysis and Design with Applications,

2nd ed. Addison-Wesley Professional, 1993.
[6] “Test-driven development,” Available: http://en.wikipedia.org/wiki/Test

driven development.
[7] “Unit test,” Available: http://en.wikipedia.org/wiki/Unit test.
[8] D. Beazley et al., “Simplified Wrapper and Interface Generator (SWIG),”

Available: http://www.swig.org/index.html.
[9] P. Peterson, “F2PY: Fortran to Python interface generator,” Available:

http://cens.ioc.ee/projects/f2py2e/.
[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-

garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA, or
http://www.netlib.org/lapack/lug/lapack lug.html: Society for Industrial
and Applied Mathematics, 1999.

[11] P. N. Swarztrauber, “FFTPACK,” Available: http://www.netlib.org/
fftpack/.

[12] D. Ascher, P. F. Dubois, K. Hinsen, J. Hugunin, T. Oliphant, et al.,
Numerical Python, http://numeric.scipy.org/numpydoc/numdoc.htm.

[13] “SciPy - Scientific tools for Python,” Available: http://www.scipy.org/.
[14] F. Pérez, “iPython: An Enhanced Interactive Python shell,” Available:

http://ipython.scipy.org/.
[15] J. Hunter et al., “Matplotlib,” Available: http://matplotlib.sourceforge.

net/.
[16] F. Prez and S. van der Walt, “Python4Science Workshop, University of

Stellenbosch,” Apr. 2006, Available: http://mentat.za.net/py4science/.

8

[17] D. B. Davidson, Computational Electromagnetics for RF and Microwave
Engineering. Cambridge, UK: Cambridge University Press, 2005.

[18] E. Jones, “Weave,” Available: http://www.scipy.org/documentation/
weave/.

[19] G. Ewing, “Pyrex - a Language for Writing Python Extension Modules,”
Available: http://www.cosc.canterbury.ac.nz/∼greg/python/Pyrex/.

[20] “Bazaar-NG, next-generation distributed revision control,” Available:
http://bazaar-vcs.org/.

[21] T. Lord, “GNU Arch,” Available: http://www.gnuarch.org/.
[22] J.-F. Lee, R. Lee, and A. Cangellaris, “Time-domain finite-element

methods,” IEEE Trans. Antennas Propagat., vol. 45, no. 3, pp. 430–
442, Mar. 1997.

[23] G. van Rossum et al., “Python Library Reference: Iterator Types,”
Available: http://www.python.org/doc/2.4.3/lib/typeiter.html.

[24] ——, “What’s New in Python 2.2: Pep 255: Simple Generators,”
Available: http://www.python.org/doc/2.2.2/whatsnew/node5.html.

