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Abstract

This paper compares three full-wave Finite Element Time Domain (FETD) formulations. The first

is based on the vector wave equation; the others on Maxwell’s equations, viz. the EBHD formulation

that discretises ~E, ~B, ~H and ~D and the EB formulation that discretises only ~E and ~B. The latter two

formulations use a combination of 1-form and 2-form discretisation to avoid an auxiliary mesh. A novel

method for making the EBHD formulation operational is presented. Conditions for Finite Difference

Time Domain (FDTD)-like explicit operation are discussed. The formulations are compared numerically

by solving a three dimensional cavity and a rectangular waveguide using high order field representations

up to mixed 4th order. The error balance between time integration and field representation is investigated.

Difficulties in making the EBHD formulation operational which have not previously been addressed in

the literature are discussed and worked around. Novel numerical results show that the EBHD formulation

has serious performance limitations.

Index Terms

Finite element methods, Electromagnetic transient analysis, high-order methods, numerical analysis

I. INTRODUCTION

For solving the transient response of electromagnetic systems, finite element time domain (FETD)

methods using unstructured meshes are suitable for complex geometries; the structured meshes used by

standard finite difference time domain (FDTD) methods limit the achievable accuracy on such geometries.

Most FETD methods require matrix solution at each time-step while FDTD is fully explicit; barring errors

in geometric modelling FDTD will usually be more computationally efficient than FETD.
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Vector full-wave Finite Element Time Domain (FETD) methods commonly fall into two categories;

those based on the vector wave equation (VWE), and those based on the coupled Maxwell’s equations. To

date wave equation formulations have been the most popular, and are well described in the engineering

literature, e.g. [1]. This may partly be due to the simplicity of implementing it in basic form given an

existing frequency domain FEM code.

Three formulations based on the coupled Maxwell’s equations that do not call for auxiliary meshes

have been proposed. One based on discretising the ~E and ~H fields as well as the ~D and ~B flux densities

is presented in [2] and expanded upon in [3]. The others discretise only ~E and ~B. One approach uses

discrete 2-form elements for ~B [4], [5] while another [6] uses a discontinuous element-wise polynomial

representation. Below, the first formulation is labeled the EBHD formulation and the other two are

collectively labeled as EB formulations. The complementarity features of 1- and 2- Whitney forms [7]

obviates a complementary mesh.

Using Newmark-β time integration [2] the VWE formulation can be unconditionally stable, a great

advantage when meshes with varying element sizes are desired. The Maxwell’s formulations involve only

first order time derivatives, simplifying the implementation of PML mesh termination and dispersive

material modelling [8]. The EBHD formulation is claimed to support explicit FDTD style operation,

while the EB formulation is simpler than the EBHD formulation.

The main contributions of this paper are: a comparison of the popular VWE formulation and two

coupled Maxwell’s formulations, presentation of a novel well-defined method to make the EBHD

formulation operational and a critical evaluation of the EBHD formulation’s accuracy. All the formulations

are implemented with field representation ranging from mixed 1st to mixed 4th order. The error

balance between time integration and field representation as the order of field representation increases is

investigated. Some of the tradeoffs involved in the choice of explicit or unconditionally stable implicit

time integration schemes are also discussed.

II. FORMULATION

Full-wave FEM formulations are generally used to solve Maxwell’s equations in a domain Ω:

∇× ~E = −µ∂
~H

∂t
= −∂

~B

∂t
(1)

∇× ~H = ~J + ε
∂ ~E

∂t
= ~J +

∂ ~D

∂t
, (2)

where ~J is the impressed source current.
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Eliminating ~H from (1) and (2), the Helmholtz vector wave equation is obtained:

∇× 1
µ
∇× ~E + ε

∂2 ~E

∂t2
= −∂

~J

∂t
. (3)

Zero initial values and boundary conditions are specified, making (1), (2) or (3) well posed initial

value problems. For simplicity, Dirichlet boundary conditions are considered here. More sophisticated

boundary conditions may be used depending on the nature of the problem being solved, see e.g. [1].

A. Field Discretisation

Using the language of Differential Forms [9], ~E and ~H field quantities are represented as discrete

1-forms (curl-conforming) and ~D and ~B flux densities as discrete 2-forms (div-conforming). Suitable

function spaces for their definition are presented in [4]. The concrete hierarchical basis functions of

arbitrary order for tetrahedrons defined in [10] and [11] are used for respectively 1-form and 2-form

discretisation.

Throughout this paper the notation ~w(1) and ~w(2) will be used for respectively 1-form and 2-form

basis functions. E.g.
~
w

(1)
ei and

~
w

(2)
bj respectively refer to the ith 1-form basis function used to discretise

an ~E field and the jth 2-form basis function used to discretise a ~B flux density. The degrees of freedom

(DOFs) are represented as column vectors, respectively {e} and {b}.

The curl of 1-forms is a subset of 2-forms. A discrete 2-form can exactly represent the curl of a 1-form.

With mixed 1st order discrete 1-form ~A and discrete 2-form ~B on the same mesh, ~B = ∇× ~A has the

discrete equivalent {b} = [Ca]{a}; [Ca] is a highly sparse circulation matrix that depends only on mesh

topology with 1 or -1 entries [5], [12]. This property is maintained when using hierarchical higher order

discretisations where the solenoidal 2-form basis functions are defined as the curl of the rotational 1-form

basis functions.

A full 2-form discretisation spans both solenoidal and non-solenoidal function spaces. However the ~B

and in source free regions ~D flux densities are solenoidal. The hierarchical 2-form basis functions defined

in [11] are split into solenoidal and non-solenoidal sets. The non-solenoidal basis function DOFs will be

identically zero as they are only updated by the curls of the fields. The non-solenoidal basis functions

can simply be omitted from the fluxes, reducing the number of DOFs needed.

B. Vector Wave Equation (VWE) Formulation

The vector wave equation formulation is well known and is discussed in detail in [1, §12]. Time

integration is performed using the Newmark-β method [13], [14]. With β ≥ 1
4 this method is
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unconditionally stable. For a detailed discussion of stability see [15]. Assuming homogeneous Dirichlet

boundary conditions, the fully discrete update equation is

[
[Mε] + ∆t2β[Sµ]

]
{e}n+1 = [

2[Mε]−∆t2(1− 2β)[Sµ]
]
{e}n

−
[
[Mε] + ∆t2β[Sµ]

]
{e}n−1

−∆t2
[
β{f}n+1 + (1− 2β){f}n + β{f}n−1

]
, (4)

where [Mε] and [Sµ] are the square mass and stiffness matrices with entries

Mεij
=

∫
Ω
ε
~
w

(1)
ei ·

~
w

(1)
ej dΩ (5)

Sµij
=

∫
Ω

1
µ

(∇× ~
w

(1)
ei ) · (∇× ~

w
(1)
ej )dΩ, (6)

{e} the vector of ~E field DOFs and {f} the current driving vector.

C. EBHD Maxwell’s Formulation

For this scheme, the Maxwell’s equations (1), (2) are used to implement a leapfrog scheme [3]. The

fields ~E, ~H are discretised as 1-forms and the flux densities ~D, ~B as 2-forms. Writing time as t = n∆t

where n is the integer time-step and ∆t is the constant time step size, we have ~E(n) and ~D(n) and half

a time step apart ~H(n+ 1
2 ) and ~B(n+ 1

2). Starting with known fields and fluxes at t = n∆t,

{b}n+ 1
2 = {b}n−

1
2 −∆t[Ce]{e}n (7)

{h}n+ 1
2 = [?b]{b}n+ 1

2 (8)

{d}n+1 = {d}n + ∆t[Ch]{h}n+ 1
2 − {j}n+ 1

2 (9)

{e}n+1 = [?d]{d}n+1. (10)

The [?b] and [?d] matrices are respectively the magnetic and electric discrete Hodge star operators. The

Hodge operator here transforms a 2-form representation into an equivalent 1-form representation [9], also

applying he constitutive relations, i.e. ~H = 1
µ
~B and ~E = 1

ε
~D.

In [3] an explicit collocation-based Hodge operator is outlined, but it requires the integration of the

undefined tangential component of 2-form basis functions at inter-element boundaries. A novel Hodge

operator is constructed by a projection process where both sides of (8) are tested using the {w(1)
h } basis

functions, resulting in

[Mh]{h}n+ 1
2 = [Pµh]{b}n+ 1

2 (11)
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giving

[?b] = [Mh]−1[Pµh]. (12)

Here [Mh] is the {w(1)
h } unit-material mass matrix, and [Pµh] the projection of {w(2)

b } onto {w(1)
h }. The

matrix entries are

Mhij
=

∫
Ω

~
w

(1)
hi ·

~
w

(1)
hj dΩ (13)

Pµhij
=

∫
Ω

1
µ

~
w

(1)
hi ·

~
w

(2)
bj dΩ. (14)

This operator is well defined since it involves only volume integrals. A discrete Hodge operator for (10)

is derived similarly.

The projection Hodge is not explicit since the [Mh] and [Me] mass matrices have to be inverted. In light

of the EBHD formulation’s poor performance using the projection Hodge (see Section III-C), attempts

at making the collocation-based explicit Hodge operational were not pursued as its performance can be

expected to be even poorer.

D. EB Maxwell’s Formulation

This formulation, also based on (1), (2), discretises ~E as a 1-form and ~B as a 2-form and was first

outlined in [4], with practical results in [5]. Because the ~E discretisation is curl-conforming (1) is trivially

verified in discrete form:
d

dt
{b} = −[Ce]{e}. (15)

More care is needed for (2). First re-write it as

ε
∂ ~E

∂t
= ∇× (

1
µ
~B)− ~J. (16)

Now a Galerkin procedure is applied by testing both sides of (16) with { ~w(1)
e }. A Green’s identity is used

to transfer the curl of ~B to the testing functions since the 2-form discretisation is not curl-conforming.

The discrete counterpart to (16), assuming Dirichlet boundary conditions, is

[Mε]
d

dt
{e} = [Pµ]{b} − {f}. (17)

[Mε] is the {w(1)
e } mass matrix defined in (5), [Pµ] the projection of {w(2)

b } onto ∇× {w(1)
e } and {f}

is the projection of ~J onto {w(1)
e }. The [Pµ] and {f} entries are:

Pµij
=

∫
Ω

1
µ

(∇× ~
w

(1)
ei ) · ~w(2)

bj dΩ, (18)

fi =
∫

Ω

~J · ~w(1)
ei dΩ. (19)
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While not pursued in this paper, the discontinuous element-wise constant ~B discretisation used in

[6] is also capable of representing exactly the curl of the low order ~E discretisation, and would yield

numerically identical results. Such a ~B discretisation would require 3 DOFs per element, although the

notation in [6] seems to imply only one. In a tetrahedral mesh each element contributes on average two

unique face DOFs, leading to a lower DOF count if a mixed first order discrete 2-form is used.

~E and ~B are discretised half a time-step apart as in Section II-C. Starting with known ~E and ~B at

t = n∆t, the update equations are

{b}n+ 1
2 = {b}n−

1
2 −∆t[Ce]{e}n (20)

{e}n+1 = {e}n + [Mε]−1∆t([Pµ]{b}n+ 1
2 (21)

− {f}n+ 1
2 ).

E. Explicit Operation

Explicit operation of these formulations requires explicit time integration and field discretisation that

results in a diagonal mass matrix. The leapfrog time integration used by the EBHD and EB formulations

is explicit, as is the Newmark-β with β = 0. Explicit time integration will at best result in conditional

stability; suitable implicit schemes, such as Newmark-β with β ≥ 1
4 are unconditionally stable.

∆t must be smaller than a certain value for leap-frog time-integration to be stable. The largest stable

time-step [16] is

∆tmax =
2√
ψmax

, (22)

where ψmax is the largest eigenvalue of the semi-discrete system as described in Sec. III-D. This is

essentially a generalisation of the Courant limit familiar from FDTD methods to general meshes. Raising

the field representation order p on a given mesh will increase ψmax, leading to a smaller ∆tmax.

With mixed 1st order rectangular brick elements the mass matrix can be diagonalised by using

trapezoidal geometric integration. Using the EB formulation, or the VWE formulation with β = 0,

the classic Yee FDTD is recovered [5], [17]. Gauss point mass lumping [18] can be applied to higher

order rectangular elements. A generalised mass lumping scheme [19] significantly increases the mass-

matrix sparsity of general hexahedral elements. Mass lumping for tetrahedral elements up to second

order has been developed [20], but no general method for diagonalising higher order tetrahedrons or

other non-Cartesian shaped 1-form elements are available in the literature. With a non-diagonal mass

matrix, the VWE with explicit time integration (β = 0) results in a better conditioned matrix equation
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than the implicit (β ≥ 0) case, since the singular [Sµ] matrix is excluded from the LHS of (4); this is

similar to the LHS that results from using leap-frog integration with the EB and EBHD formulations.

III. CAVITY RESONANCE PROBLEM

To evaluate the basic operation and convergence of FEM formulation a simple problem that depends

on no other aspects of the method is required. The resonance of a rectangular PEC cavity is such a

problem; it has well known resonant modes and the analytical solution is straightforward and can be

found in many engineering electromagnetics texts. If a cavity is fed with a wide band pulse designed

to excite all the modes, resonant peaks should appear at the modes’ cutoff frequencies. The measured

frequency-locations of the resonant peaks do not depend on the nature of the numerical excitation or

measurement; the only requirement is that the source excites all the modes of interest.

Frequency domain FEM methods have an error term due to the geometric modelling of the chosen

element and another due to the field truncation within the element. When discretising a geometry that the

elements can conform to, such as the rectangular cavity under consideration here, only the field truncation

error remains. Time domain FEM also introduces an error term due time integration. By solving the

semi-discrete system as an eigen-problem as described in Sec. III-D the effect of time integration can be

isolated.

A. Problem Configuration

A 29x23x19 m cavity (as analysed in [21]) is discretised using tetrahedrons with a nominal edge

length of 3 m. Note that in this and the following sections the speed of light is normalized to 1 m/s. This

cavity has evenly spaced mode cutoff frequencies over an approximately 2:1 bandwidth starting from the

lowest mode cutoff frequency. The source and measurement points were chosen to excite and capture

the response of all the modes over this bandwidth. The cavity is excited by a (1; 1; 1) directed electric

dipole at rs = (7, 2, 4) using a sine-wave modulated by a Gaussian pulse time-waveform. The waveform

is designed with a centre frequency (Fc) of 0.0375 Hz and 90% of Fc -6 dB bandwidth. The E-field

response at rm = (17, 14, 12) is recorded at each time-step. The frequency response is analysed between

the frequencies fmin = 0.025 Hz and fmax = 0.050 Hz.

B. Result Extraction

In general FFT analysis ∆t is chosen such that fnyq = 2fmax where fnyq is the Nyquist frequency

and no significant spectral content exists for f > fmax, yielding ∆tnyq = 1
2fmax

. Here, ∆t is bound by
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Fig. 1. FFT of time domain cavity response using mixed 2nd order elements and ∆t = 1
64

. Vertical bars indicate the analytically

calculated cavity mode cutoff frequencies. The EB result shows clear peaks at the cutoff frequencies while the EBHD result

shows spurious peaks throughout the frequency range.

time integration accuracy and, for the conditionally stable schemes, stability criteria. The resulting ∆t is

usually much smaller than required by the Nyquist criterion.

Maintaining sufficient frequency resolution leads to unpractically large FFTs as ∆t is reduced. By

choosing ∆t as an integral divisor of ∆tnyq, i.e. ∆t = ∆tnyq/n and using every nth simulation time

sample, the FFT size is constant in ∆t. Choosing ∆tnyq = 4 sets fnyq high enough to avoiding frequency

aliasing.

The three ~E-field component time series are each weighted with a Hamming window and zero extended.

To provide sufficient frequency resolution, the cavity systems were time stepped for 40 000 s.

To find the resonant peaks the absolute value of the three ~E-field FFTs are added and a simple

peak finding algorithm was applied. Sample responses can be seen in Figs. 1 and 2. A single result

datum is finally obtained by calculating the frequency-normalised RMS error of the 8 frequencies under
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Fig. 2. FFT of time domain cavity response using mixed 4th order elements and ∆t = 1
64

. Vertical bars indicate the analytically

calculated cavity mode cutoff frequencies. In contrast to the mixed 2nd order case, the EBHD result shows recognisable peaks

at the cutoff frequencies while the spurious peaks have reduced amplitude.

consideration.

C. Cavity Resonance Results

Error convergence in element basis order for different time-step sizes using the VWE formulation and

unconditionally stable Newmark-β time integration is shown in Fig. 3. The ability to use arbitrarily large

time-steps is useful when illustrating the separate convergence in ∆t and p. The result labeled “eigen”

represents perfect time integration and was calculated as described in Sec. III-D. For sufficiently small

values of ∆t the error is dominated by the field error, showing p convergence as for the eigen result.

Fig. 4 shows convergence in ∆t for various basis orders. Generated from the same raw data as Fig. 3,

it represents a dual interpretation. Even at the largest ∆t considered the mixed 1st order error is clearly

dominated by the field truncation error. Using 3rd order basis functions O(∆t2) convergence is seen for
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Fig. 3. Convergence in field-basis order using unconditionally stable Newmark-β time integration. Legend shows values of

∆t, or “eigen” for the semi-discrete system’s eigenvalues.

all but the smallest values of ∆t where field truncation error contributes significantly, while the error

using 4th order basis functions is dominated by time integration throughout. The corresponding results

using the EB formulation is shown in Fig. 5. The major difference between the Newmark-based and EB

formulations are the result of conditional stability for the latter, resulting in the omission of larger ∆t

values for the higher basis-order runs. Within the ∆t and basis-order parameter space common to both

formulations the results are similar with the EB formulation being slightly more accurate in general. For

some specific combinations of ∆t and basis order, most easily visible for ∆t = 0.25 s and mixed 2nd

order basis functions, the field and time integration errors appear to cancel partly when using Newmark-β,

resulting in a more accurate determination of resonant frequencies than the eigen solution provides; this

behaviour was not observed in the EB solutions. At the EB stability limit the total error is dominated

by the time integration error but the field truncation error already contributes significantly; refinement in

∆t reduces the error but at a rate less than O(∆t2).
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Fig. 4. Convergence in ∆t using unconditionally stable Newmark-β time integration. Legend shows field-basis order.

It was not possible to automatically extract resonant frequencies from the EBHD results due to the

prevalence of spurious modes as can be seen in Fig. 1 and Fig. 2. The mixed 4th order results in Fig.

2 do show some more strongly exited modes that correspond to the correct modal resonant frequencies.

Manually excluding the spurious modes, the mixed 4th order EBHD solution shows an RMS error of

0.01 percent over the resonant mode frequencies. The corresponding mixed 2nd, 3rd and 4th order EB

results are 0.068, 0.0014 and 7× 10−5 percent respectively. This shows that the mixed 4th order EBHD

accuracy is of the same order of magnitude as the mixed 2nd order EB solution while requiring about

twice the computational work of the 4th order EB solution. The correspondence of the apparently correct

mode resonances calculated by the EBHD formulation to physical modes is investigated in Sec. III-D.

At the smallest ∆t, the systems were stepped 5.12× 106 times. No traces of late time instability was

noted for either EB or EBHD methods. The VWE showed slow linear growth [22]. The growth was

positively correlated to element order, but never significantly affected the results for this problem.

August 14, 2008 DRAFT



11

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8�log
10

(
�

t)

-7

-6

-5

-4

-3

-2

-1
lo
g
1
0
(R

M
S
 e

rr
o
r)

0.5
1.5
2.5
3.5

Fig. 5. Convergence in ∆t using the EB formulation and conditionally stable leap-frog time integration. Legend shows field-basis

order. Larger ∆t values not calculated for high basis-order due to stability requirements.

D. Cavity Eigen Solution

The source-free semi-discrete forms of the formulations are transformed to the frequency domain

by replacing d
dt by −jω and all the field/flux unknowns except for ~E are eliminated. The remaining

equation can be cast in the standard form of a generalised eigen-problem. Solving this eigen-problem on

a cavity yields the cavity mode cutoff wavenumbers as eigenvalues. Replacing d
dt by −jω implies perfect

time integration, hence any error in the eigen solution is determined solely by errors in geometric field

interpolation.

The VWE formulation yields the well known eigen system,

[Sµ]{e} = ω2[Mε]{e}. (23)

Using the Galerkin discrete Hodge operator for the EBHD formulation, the eigen system is

[Pεe][Ch][Mh]−1[Pµh][Ce]{e} = ω2[Me]{e}. (24)
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For the EB formulation it is

[Pµ][Ce]{e} = ω2[Mε]{e}. (25)

The respective eigen systems were solved using the same mesh as in Section III. The calculated values

of the four lowest cut-off frequencies are shown in Table I.

Formulation Mode Cutoff Wavenumber

Analytical 0.174 0.198 0.214 0.240 0.240

VWE. 0.163 0.187 0.212 0.223 0.235

EBHD 0.037 0.057 0.060 0.061 0.067

EB 0.163 0.187 0.212 0.223 0.235

TABLE I

ANALYTIC VS. COMPUTED MODE CUTOFF FREQUENCIES USING MIXED 1ST ORDER ELEMENTS. THE FOUR LOWEST VALUES

LARGER THAN ZERO ARE SHOWN.

Mirroring the time-domain results, the EBHD eigen-spectrum has many spurious modes. These closely

spaced spurious modes exist throughout the whole eigen-spectrum. Similar spurious modes persist in the

EBHD spectrum when h and/or p adaptation is applied; the other formulations converge at the expected

rate [10]. Note that the mesh used is quite coarse, resulting in somewhat inaccurate results with the

lowest order elements. The VWE and EB formulations are equivalent for the eigen-problem since they

both model exactly the same spaces. Indeed, by noting that [Pµ][Ce] = [Ce]T [Mµ]−1[Ce] it can be shown

[23] that [Pµ][Ce] = [Sµ].

To see if the seemingly non-spurious EBHD modes represent physical solutions, the corresponding

field is reconstructed using the eigenvector and compared to the physical solution. Fig. 6 shows a visual

comparison of the field-plots of an x–y cross-section. The non-spurious EBHD mode compares well to

the analytical and EB modes. The other EBHD mode shown, which has a cutoff frequency very close to

that of the physical mode, shows a clearly non-physical field distribution.

A consistent discrete Hodge should be isomorphic. This implies that if ~E is represented using discrete

1-forms defined on the primary mesh, ~D should be represented by discrete 2-forms defined on the

barycentric dual mesh [12], [24], [23], [25]. The number of edges on the primary mesh is equal to the

number of faces on the dual mesh, leading to the isomorphism. These properties are implicitly satisfied

by the VWE and EB formulations. Attempting to use the primary mesh for all quantities makes an

August 14, 2008 DRAFT



13

Fig. 6. Magnitude of ~Ez field component of the TE101 mode and a spurious EBHD mode with a cutoff frequency close to

that of the real TE101 mode. Calculated over an x-y cross-section at z = 9.5 m.

isomorphism between e.g. ~E and ~D impossible, since the number of edges ( ~E) and faces ( ~D) on the

primary mesh are not equal, resulting in the spurious modes exhibited by the EBHD formulation.

The eigenvalue with the largest magnitude is of interest since it determines the largest stable time-

step size that can be used with conditionally stable time integration; larger magnitudes require smaller

time-steps. The largest eigenvalue can be determined efficiently using e.g. ARPACK [26]. Using the

same mesh and basis function order the EBHD semi-discretisation consistently yields a smaller maximal

eigenvalue, hence a larger maximum time-step. For the coupled 1st order case the largest EB eigenvalue

is 1.25 vs. 0.39 for the EBHD system. The EBHD value also seems to grow much more slowly as the

basis order is increased; mixed 4th order discretisation yields a maximum eigenvalue of 2707 for the EB

and only 141 for the EBHD semi-discretisation. While this means that for a given discretisation a larger

value of ∆t can be used with the EBHD formulation than with EB, the inaccuracy of the EBHD results

negate this advantage in practice.
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IV. RECTANGULAR WAVEGUIDE TRANSIENT RESPONSE

In contrast to the results in the previous sections, a waveguide calculation has shown seemingly

reasonable performance using the EBHD formulation in [27]. In this section the formulations are compared

using a similar problem. The aim is to measure the performance of the formulations independent of other

sources of error. The elements used can conform exactly to the rectangular geometry, avoiding geometrical

error. It is also desirable to avoid the use of mesh truncation schemes as they would introduce another

source of error.

A. Problem Configuration

A waveguide with a cross section of 1 by 0.25 m that has a cutoff frequency fc = 0.5 Hz is considered.

While the frequency-domain analytical solution of such a waveguide is well known, applying it in the

time domain is non-trivial thanks to the dispersive behaviour of such waveguides. One approach would

be to time-step the system until the response has decayed to an insignificant level and approximating the

Fourier integral using this response. This would require very long run times and also necessitate the use

of a mesh truncation schemes, which is undesirable.

By evaluating the inverse Fourier integral of the analytical frequency domain response the time domain

response can be found. A closed form expression of the waveguide impulse response is derived in [28].

Closed form results for a waveguide exited by a CW pulse are also given; using numerical integration

to perform time convolution the response to arbitrary driving functions can be obtained. The impulse

response presents quite a stiff integrand just after the first energy arrives, requiring the use of adaptive

quadrature. This integral has to be evaluated at each time point of interest.

The waveguide is exited at z = 0 m using a Gaussian pulse modulated sine-wave with a centre

frequency of 2.75fc and a 190% -6 dB bandwidth. Since this waveform extends to positive and negative

infinity, it is time-shifted such that at turn-on (t = 0) the power level is at -60 dB relative to peak. It is

turned off at t = 1.94 s where it is again at -60 dB.

An analytic reference result is obtained by evaluating the response at regularly spaced time samples

from t = 0 to t = 9 s at z = 1 m; the FFT is applied to the resulting time series. The analytical time-step

is chosen as ∆ta = 1/16 s. While this yields a high enough Nyquist frequency to avoid significant

frequency aliasing, any remnant aliasing is made immaterial by choosing the FEM time-steps such that

∆t = ∆ta/m (26)

and saving only every m’th sample. The FEM results are therefore subject to exactly the same aliasing.
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Fig. 7. FFT of analytically calculated waveguide transient response.

The result is characterised by its discrete transfer function H(w):

H(w) =
G(w)
F (w)

(27)

where w is the discrete frequency variable, G(w), the DFT of the output at z = 1 m and F (w) the

DFT of the driving function. Due to numerical noise, the spectrum of H(w) is only meaningful in the

region where F (w) contains considerable energy. The spectrum of F (w) is shown in Fig. 7. Results are

considered where |F (w)| is -10 dB relative to peak or larger; the frequency range of interest is 0.4375

Hz to 2.375 Hz.

B. Result Extraction

A short-circuited length of waveguide is meshed using tetrahedrons with a nominal edge length of 0.2

m. Considering the 9 s simulation time, a 5.1 m length of waveguide ensures that no reflections from the

short circuited end have time to reach the measurement plane. The TE10 waveguide-mode is excited at
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z = 0 using an E-field Dirichlet boundary condition matched to the tangential components of the TE10

mode using projection:∫
Ωs

(n̂×
∑
j

ej
~
w

(1)
ej ) · (n̂× ~

w
(1)
ei ) =

∫
Ωs

(n̂× ~Em) · (n̂× ~
w

(1)
ei ), (28)

where ~Em is the mode-field and Ωs is the waveguide cross-section. The mesh was constructed with

element faces lying in the z = 1 m measurement plane. The mode response is extracted at z = 1 using

the surface integral

g̃(nFEM∆t) =

∫
Ωs

(n̂× ~Ez=1) · (n̂× ~Em)∫
Ωs

(n̂× ~Em) · (n̂× ~Em)
, (29)

where ~Ez=1 is the numerical field in the plane.

The system is time-stepped for 9/∆t steps and every m’th value of g(nFEM∆t) is stored with m as

in (26), yielding a time-series of the same length as the analytical result to which the FFT is applied.

The phase and magnitude response of the resulting FFTs are separately compared to the analytical result.

A single phase or magnitude datum is obtained by calculating the RMS error over the FFT frequencies

from 0.4375 Hz to 2.375 Hz.

C. Rectangular Waveguide Results

Convergence of |H(w)| in basis order is shown in Fig. 8. The error only shows weak dependence on

∆t. Since the problem is lossless and conservative time integration is used, the magnitude response of

an unobstructed through depends more strongly on the local field truncation error.

Convergence of 6 H(w) is shown in Fig. 9. Phase error is essentially a measure of numerical dispersion.

The phase error behaviour shows the same behaviour as seen in Section III-C where O(∆t2) error

behaviour is seen until the field truncation error dominates. Solved using the EB formulation, the

error behaviour of |H(w)| at the common values of ∆t is indistinguishable from the Newmark result.

Convergence of 6 H(w) is shown in Fig. 10. With mixed 2nd order and higher field discretisation, the

EB results have converged fully in ∆t at their respective stability limited values. The mixed 1st order

discretisation however shows a larger phase error at the stability limit ∆t = 0.0306 than the Newmark

result using ∆t = 0.0625.

It was found that the EBHD result is almost fully converged at the respective stability-limited values of

∆t for each basis order. Results for a common value of ∆t is shown in Fig. 11. Good convergence is seen

in the phase error but only weak convergence in magnitude. It is likely that spurious modes like those

seen in Sec. III are being excited, sapping energy out of the TE10 mode. Since the field is integrated
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Fig. 8. Convergence of |H(w)| in basis order using unconditionally stable Newmark-β time integration. Legend shows ∆t.

over the TE10 mode at the measurement cross-section according to (28), the spurious modes do not

affect the received phase as strongly as the energy lost to other modes affect the magnitude accuracy.

The effect of the spurious modes is seen more clearly by calculating the field at a point in the center of

the z = 1 m cross-section; at this point the Ey field component would be identical to the result calculated

by (28) for an exact result. As shown in Fig. 12, calculations using the EB formulation show point field

and mode integral results that are close, while a significant discrepancy exists in the EBHD calculations.

Comparison of the EBHD results to those presented in [27] would have been instructive; unfortunately

necessary information such as the time-step size, time waveform and mesh edge length used are not

specified in that paper.

V. CONCLUSION

In this paper a summary of three full-wave finite element time domain (FETD) formulations have been

presented. The proper discretisation in terms of discrete Whitney forms and the use of hierarchical basis
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Fig. 9. Convergence of 6 H(w) in ∆t using unconditionally stable Newmark-β time integration. Legend shows basis order.

functions to omit redundant 2-form DOFs have been discussed. Unresolved issues regarding the explicit

operation of the EBHD as proposed in prior literature have been raised and a novel operational scheme

that circumvents the issues, at the cost of solving mass matrices, has been presented.

Novel comparative results using the three presented FETD formulations with high-order field dis-

cretisation on canonical EM problems have been presented. The EBHD formulation has been shown to

suffer from poor performance due to the presence of spurious modes in its semi-discrete form, making it

unsuitable for solving even simple driven problems. The main practical differences between the EB and

VWE formulations using respectively leap-frog and unconditionally stable Newmark-β time integration

schemes are down to stability considerations.

The EB formulation requires increasing smaller time-steps to remain stable as the order of field-

discretisation is increased. Regardless of stability requirements, both the EB and VWE formulations

require similarly small time-steps to achieve the accuracy attainable by high-order field modelling. The

implicit VWE formulation is seen to be slightly more accurate with low order discretisation and large
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Fig. 10. Convergence of 6 H(w) in ∆t using the EB formulation and conditionally stable leap-frog time integration. Legend

shows basis order. Larger ∆t values not calculated for high basis-order due to stability requirements.

time-steps, whereas the EB formulation has a slight advantage towards the other extreme.

For the EB formulation only mass matrices need to be solved, yielding a better conditioned matrix

equation and hence faster iterative solution than the implicit VWE formulation, or explicit operation for

elements that have diagonalisable mass. Further, due to the presence of only first order time derivatives,

the implementation of PML for domain truncation is much simpler than for the VWE formulation.

These results suggest future work in hybridising the implicit and explicit formulations with suitable

diagonalisable elements in a high-order analog to the FDTD-FETD hybrid presented in [17].
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