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Abstract — This paper presents a simple, convolu-
tion free, uni-axial perfecly matched layer (UPML)
implementation applicable to high-order, explicit fi-
nite element time-domain (FETD) solvers. While
implementing the UPML for the general FETD
case is fairly complex, a simple FDTD-inspired im-
plementation can be derived for the special case
of diagonalised Cartesian hexahedra (also called
Lobatto-cells). The FDTD description is not di-
rectly applicable to Lobatto-cells; analysis in a dis-
crete differential-forms framework results in a suit-
able FEM description. The resulting semi-discrete
form is discretised in time using the leapfrog central-
difference method, although an approximation (also
present in the FDTD implementation) is made to
avoid the need for time-convolution.

1 Introduction

In common with all PDE based methods, finite el-
ement methods (FEM) requires domain truncation
methods to make the simulation of finite structures
embedded in open regions possible. Berenger’s per-
fectly matched layer (PML) [1] method, first used
finite difference time domain (FDTD) context, is
an attractive domain termination scheme. While
its application to FDTD and frequency domain
FEM formulations is fairly straight forward, gen-
eral PML implementation for finite element time
domain (FETD) methods is not: implementations
based on the vector-wave equation (curl-curl form)
are formidably complex while potentially suffer-
ing from instability [2]; coupled Maxwell’s equa-
tion implementations are more straight forward [3],
but in general requires the storage of several auxil-
iary variables to avoid the need for numerical time-
convolution.

In the special case of lumped Cartesian hexahe-
dra [4], their specific properties allow an efficient
and straight-forward extention of the uniaxial PML
(UPML) to higher order explicit FETD in a man-
ner inspired by the FDTD example [5, §7.8]. When
used in an implicit/explicit hybrid [6] with a hex-
ahedral/tetrahedral hybrid discretisation [7], good
geometrical modelling and computational efficiency
can be comibed.
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2 Analysis

2.1 Continuum UPML Absorber

The UPML method describes the absorber
as a dispersive, electrically and magnetically
lossy, anisotropic material with a characteristic
impedance that is matched to its surroundings.
The frequency-domain Maxwell’s equations in a
UPML region matched to free-space is written as:

∇× ~H = jωε
=
s ~E, (1)

∇× ~E = −jωµ=
s ~H, (2)

where

=
s =

 sysz
sx

sxsz
sy

sxsy
sz

 , (3)

and
su = κu +

σu
jωε0

. (4)

κx/y/z are stretching factors that makes the
medium electrically longer for values larger than
1. σx/y/z are electric or magnetic conductivities1

that cause the fields inside the PML region to at-
tenuate. Setting σx > 0 causes the attenuation of
waves travelling in the x̂ direction. Note that the
same

=
s is used for both (1) and (2) in order to

match the medium to free-space.
We define for subsequent use:

=
sx =

 sx
sy

sz

 . (5)

By permuting the diagonal entries, we also have
=
sy

with diagonal sy, sz, sx and similarly for
=
sz. Now,

=
s =

=
s
−1

x

=
sy

=
sz, (6)

but since all the matrices are diagonal, we can per-

mute the application of
=
s
−1

x ,
=
sy and

=
sz in any or-

der. Similar diagonal matrices can be defined for
=
σx/y/z and

=
κx/y/z such that

=
sx =

=
κx +

=
σx
jωε0

. (7)

1Applied to the ~E field, σx/y/z is an electric conductivity,

magnetic when applied to ~H.



The FDTD convolution-free implementation now
introduces two auxiliary fields. In the FDTD liter-
ature the physical fields are given as ~E and ~H and
the auxiliary fields as ~D and ~B. This is not quite
accurate, since they are not the physical ~D and ~B
fluxes; instead they are written D̃ and B̃ here, the
tilde indicating their non-physical nature. They are
defined as

D̃ = ε
=
s
−1

x

=
sz ~E, B̃ = µ

=
s
−1

x

=
sz ~H, (8)

allowing the application of the material operator
=
s

to be split into two steps. Together with (1, 2) this
implies:

~D =
=
syD̃, ~B =

=
syB̃. (9)

The FDTD analysis proceeds to directly substitute
these relations into the Cartesian component form,
leading to expressions that have an obvious finite
differences discretisation. Unfortunately it does not
provide any insight into the FEM discretisation of
the UPML.

A suitable FEM discretisation may be obtained
by analysing the UPML as differential forms [8, 9].
I.t.o. the auxiliary field components, we have

jω ?sy D̃ = dH, (10)

jω ?sy B̃ = −dE, (11)

where ?sy is a material Hodge operator. Given that
H and E are 1-forms, the result of the differential
operator d on the RHS is 2-form. For the LHS
to also be 2-form, the material Hodge ?sy has to

operate on 1-forms, implying that D̃ and B̃ are 1-
forms. For (8) to have consitent forms on both

sides, ε and µ have to be combined with
=
sz as single

Hodge operators to form:

D̃ = ?s−1
x
?εsz E, B̃ = ?s−1

x
?µsz B. (12)

2.2 Semi-discrete UPML

The standard semi-discretisation of Maxwell’s
equations discretises ~E as ’n discrete 1-form and ~B
as a discrete 2-form, both defined on the primary
lattice. The discrete forms implicitly define twisted
lattice discretisations of ~D and ~H on the dual grid
[9]. Some pertinent properties of the discrete dif-
ferntial forms operators in 3-D space are:

• The discrete exterior derivative operator d op-
erating on a 1-form (i.e. ∇×) results in 2-form
on the same (i.e. primary or twisted) lattice.

• Hodge ? operators define an isomorphism be-
tween between l-forms on one lattice (e.g. pri-
mary 1-form) and (3 − l)-forms on the dual
lattice (e.g. twisted 2-form).

Written in discrete forms notation, (10-12) become:

jω[?sy ]{d̃} = [C]T {h†}, (13)

jω[?†sy ]{b̃†} = −[C]{e}, (14)

{d̃} = [?sx ]−1[?εsz ]{e}, (15)

{b̃†} = [?†sx ]−1[?†µsz ]{h†}, (16)

where the † superscript indicates twisted form
quantities, [C] is the incidence (i.e. exterior deriva-
tive) matrix, [?] is a discrete Hodge matrix and {·}
represents discrete form degrees of freedom. Con-
tinuum Hodges, e.g. ?sx , operate on both electric
and magnetic quantities, while in the discrete case
there are separate Hodges defined for either pri-
mary grid or twisted forms.

Calculating the entries of the primary grid dis-
crete Hodge operators is quite straight forward us-
ing the normal Galerkin Hodge process:

[?εsz ]ij =

∫
Ω

~w
(1)
i · ε

=
sz ~w

(1)
j dΩ, (17)

and similarly for [?sy ] and [?z], where ~w
(1)
i are the

primary grid 1-form basis functions used to expand
the ~E field. Calculating the entries for the twisted
form Hodge operators is not obvious since basis
function expansions of the twisted forms are un-
known. They can, however, be defined quite simply
by using Galerkin duality [10, 11]. For example:

[?†µsz ] = [?µ−1s−1
z

]−1, (18)

with

[?µ−1s−1
z

]ij =

∫
Ω

~w
(2)
i · µ

−1 =
sz
−1
~w

(2)
j dΩ, (19)

where ~w
(2)
i are the primary grid 2-form basis func-

tions used to expand ~B. Now we can rewrite (16)
as

{b̃†} = [?s−1
x

][?µ−1s−1
z

]−1{h†}, (20)

and similarly for (14).
The standard frequency-domain FEM discretisa-

tion of the UPML material, is

{d†} = [?εs]{e} (21)

{b} = [?µ−1s−1 ]−1{h†}, (22)

where

[?εs]ij =

∫
Ω

~w
(1)
i · ε

=
s ~w

(1)
j dΩ, (23)

and a similar integral involving 2-form basis func-
tions for [?µ−1s−1 ].



Assuming initially that
=
s and ε are constant, we

can write2

[?εs] =
εsysz
sx

[L(1)
x ]+

εszsx
sy

[L(1)
y ]+

εsxsy
sz

[L(1)
z ] (24)

and a similar expression for [?µ−1s−1 ] where the

[L
(l)
u ] matrices represent the metric of the l-form

basis functions in the û direction:

[L(l)
u ]ij =

∫
Ω

(û · ~w(l)
i ) · (û · ~w(l)

j ) dΩ. (25)

It is quite clear that in general [?sy ][?sx ]−1[?εsz ] 6=
[?εs]. However, the [Lu] matrices for Cartesian hex-
ahedra have additional structure since the basis
functions are defined in separate x̂, ŷ and ẑ directed
groups. Assuming the global degrees of freedom are
numbered such that the x̂, ŷ and ẑ directed groups
are numbered in order, we have

[Llx] =

 [Llxx] 0 0
0 0 0
0 0 0

 , (26)

and similarly for [Lly] with [Llyy] on the second di-

agonal block and [Llz] with [Llzz] on the third. Now
we can write:

[?εsz ] = εsz[L
(1)
xx ]⊕ εsx[L(1)

yy ]⊕ εsz[L(1)
zz ]. (27)

Considering only the x directed dofs we have

(
[?sz ][?sx ]−1[?εsz ]

)
x

=

(
sy[L(1)

xx ]
1

sx
[L(1)
xx ]−1εsz[L

(1)
xx ]

)
=
sysz
sx

[L(1)
xx ]

= ([?εs])x ,

(28)

and similarly for the y and z blocks. The iden-
tity (28) depends on multiplication by the material
properties being commutative; this is ensured by
the choice of constant material properties and by
the block-diagonal property of the [Lu] matrices.
However, when using the basis functions and ap-
proximate inner product as defined in [4], both the
[Lu] matrices and material operators can be written
as diagonal matrices, implying commutative multi-
plication. In other words, when using these lumped
Cartesian hexehedra, the two-step material applica-
tion is equivalent to the standard FEM discretisa-
tion.

2Note, here sx, sy and sz are the scalar quantities in (4),

not to be confused with the the dyads
=
sx, etc. in (6)

2.3 Fully Discrete UPML

To make the UPML operational, time-domain ex-
pressions are required. If the time-domain expres-
sions involve only first-derivatives of time, the stan-
dard central difference leap-frog time-discretisation
can be used without the need for numerical convolu-
tion. Subsequently we assume diagonalised Carte-
sian hexahedra are used for the spatial discretisa-
tion. We consider the case where the material prop-
erties are element-wise constant as is normal for the
FEM. Because of the block-diagonal nature of the
matrices, we can analyse the x̂, ŷ and ẑ basis sets
independently; subsequently we will only work with
the x̂ components, since the analysis of the other
components are similar. Also assuming diagonal
[Lu] matrices we can calculate the entries of the di-
agonal material operator matrices as e.g. (and sim-
ilarly for the other material matrices)

[sx]ii =

supp(~w
(1)
i )∑

K

sx(K)

len(supp(~w
(1)
i ))

, (29)

where supp(~w
()
i ) is the support of basis function ~w

()
i

and len(·) gives the number of elements.
We only treat the derivation of an update equa-

tion for (20), since none of the other update equa-
tions involve problematic time derivatives. Substi-
tuting the material defined above into (20), we have

{b̃†} = [s−1
x ][L(2)

xx ]
(

[µ−1s−1
z ][L(2)

xx ]
)−1

{h†}, (30)

but since all the matrices are diagonal, we solve for
{h†} and get

{h†} = [s−1
x ]−1[µ−1s−1

z ]{b̃†}. (31)

Now we consider only a single equation defined for
{h†}i and {b̃†}. Using the fact that discrete 2-forms
can only have face or volume degrees of freedom, a

given ~w
(2)
i can have support in at most 2 elements.

We label the elements Ka and Kb. Now we have

{h†}i =

1
sx(Ka) + 1

sxKb

1
µKasz(Ka) + 1

µ(Kb)sz(Kb)

{b̃†}i. (32)

This results in an expression that requires time-
convolution to cast into the time-domain. If we
make the following approximation:

1

s(Ka)
+

1

s(Kb)
' 1

(s(Ka) + s(Kb))/2
, (33)

resulting in the much simpler form

µ̄s̄z{h†}i = s̄x{b†}i (34)



where the overbar indicates the average value in Ka

and Kb. Now we can write

µ̄(jωκ̄z + σ̄z){h†}i = (jωκ̄x + σ̄x){b†}i. (35)

This is in fact the same form that the FDTD equa-
tions take [5, §7.8.1]. The approximation implied
by (33) goes some ways to explaining the need for
graded FDTD profiles; if the material parameters
vary smoothly, (33) will be a resonable approxima-
tion. Transforming to the time-domain, we get

µ̄(
∂

∂t
κ̄z + σ̄z){h†}i = (

∂

∂t
κ̄x + σ̄x){b†}i. (36)

This form contains only first derivatives, hence
straight-forward time discretisation is possible us-
ing standard leap-frog central differencing and the
semi-implicit [5, (3.26)] treatment of loss terms.

To make the UPML operational, the following
procedure is followed: At whole time-steps (13) is
solved for {d̃} followed by solving (15) for {e}. At
half time-steps, (14) is solved for {b†}, followed by
solving (16) for {h†}. Since all the system matri-
ces are diagonal, the solution is explicit. Above we
assume that the equations have been converted to
their time-domain equivalents.

3 Results

Results are shown for an infinitesimal dipole lo-
cated at the centre of a 2x2x2m freespace cube with
a cell-size of 1/7.5 m and a 5-cell UMPL termina-
tion with a cubic profile. The speed of light is nor-
malised to 1m/s. The dipole is excited using a dif-
ferentiated Gaussian pulse with a centre-frequency
of 1 Hz, and the timestep 1/75 s.

Figure 1: Comparison of 1st, 2nd and 3rd or-
der UPML-terminated explicit FETD infintesimal
dipole solutions with analytical result.

The 1st order result in fig. 1 shows a fairly
poor transient response due to numerical dispersion
caused by the rather coarse discretisation, and also
a significant reflected wave of ≈ -15 dB. The 2nd or-
der result has an almost perfect transient response,
and reflection of ≈ -45 dB. The 3rd order result im-
proves the reflection to ≈ -62 dB. Note that they all
use the same PML profile and size; the differences
are due only to improvements in field discretisation.

4 Conclusion

The two-step FDTD UPML implementation was
analysed using differential forms in order to pro-
duce a scheme suitable for FEM implementation. It
was shown that this scheme is equivalent to the rig-
orous FEM discretisation when lumped Cartesian
hexahedra are used. Results of an higher-order ex-
plicit FEM based on these elements and the UPML
method derived here was presented, showing good
absorber performance.
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