
A Comparison of Some Finite Element Time Domain

Formulations in Electromagnetics

Neilen Marais and David B. Davidson∗

Abstract — This paper compares three full-wave Fi-
nite Element Time Domain (FETD) formulations.
The first is based on the vector wave equation; the
others on Maxwell’s equations, viz. the EBHD for-
mulation that discretises ~E, ~B, ~H and ~D and the
EB formulation that discretises only ~E and ~B. The
latter two formulations use a combination of 1-form
and 2-form discretisation to avoid an auxilary mesh.
A method for making the EBHD formulation oper-
ational is presented and conditions for Finite Differ-
ence Time Domain (FDTD)-like explicit operation
are discussed. Numerical results for a three dimen-
sional cavity and a coaxial transmission line show
that the EBHD formulation has serious performance
limitations.

1 Introduction

For solving the transient response of electromag-
netic systems, finite element time domain (FETD)
methods using unstructured meshes are suitable for
complex geometries; the structured meshes used
by finite difference time domain (FDTD) meth-
ods limit the achievable accuracy on such geome-
try. Most FETD methods require matrix solution
at each time-step while FDTD is fully explicit; bar-
ing errors in geometric modeling FDTD will usually
be more computationally efficient than FETD.

Vector full-wave Finite Element Time Domain
(FETD) methods commonly fall into two cate-
gories; those based on the vector wave equation,
and those based on the coupled Maxwell’s equa-
tions. To date wave equation formulations have
been the most popular, and are well described in
the common engineering literature, e.g. [1]. This
may partly be due to the simplicity of implementing
it in basic form given an existing frequency domain
full-wave FEM code.

Excluding formulations that call for auxilary
meshes, two formulations based on the coupled
Maxwell’s equations have been proposed. A for-
mulation based on discretising the ~E and ~H fields
as well as the ~D and ~B flux densities is presented in
[2] and expanded upon in [3]. The other, discretises
only the ~E field and ~B flux density [4, 5]. They are
respectively called the EBHD formulation and the
EB formulation in this paper. The complementar-
ity features of 1-form and 2-from Whitney forms [4]

∗Department of Electrical and Electronic En-
gineering University of Stellenbosch, South Africa
nmarais@gmail.com, davidson@sun.ac.za

obviates a complementary mesh.
Using the Newmark-β time-stepping scheme [2]

the wave equation formulation can be uncondition-
ally stable, a great advantage when meshes with
varying element sizes are desired. Both Maxwell’s
formulations involve only first order time deriva-
tives, potentially simplifying the implementation
of PML mesh termination and dispersive material
modeling. The EBHD formulation is claimed to
support explicit operation in FDTD style opera-
tion, while the EB formulation is simpler than the
EBHD formulation.

This paper compares the popular wave equation
based formulation and the two coupled Maxwell’s
formulations. Relative accuracies are compared
and the possibility of explicit operation discussed.

2 Formulation

Full-wave FEM formulations are generally used to
solve Maxwell’s equations in a domain Ω:

∇× ~E = −µ
∂ ~H

∂t
= −∂ ~B

∂t
(1)

∇× ~H = ~J + ε
∂ ~E

∂t
= ~J +

∂ ~D

∂t
. (2)

Taking the curl on both sides of (1) and eliminat-
ing ~H using (2), the Helmholtz vector wave equa-
tion is obtained:

∇× 1
µ
∇× ~E + ε

∂2 ~E

∂t2
= −∂ ~J

∂t
. (3)

Zero initial values and boundary conditions are
specified, making (1, 2) or (3) well posed initial
value problems. For simplicity, Direchlet boundary
conditions are considered here. More sophisticated
mesh termination schemes may be used depending
on the nature of the problem being solved, see e.g.
[1].

2.1 Field Discretisation

Using the language of Differential Forms [6], the
~E and ~H field quantities are 1-forms that, assum-
ing continuous material parameter variation within
elements, fundamentally require tangential inter-
element continuity; similarly, the 2-form ~D and ~B



flux densities require normal inter-element conti-
nuity. These tangential and normal continuity re-
quirements are often equivalently stated as, respec-
tively, curl- and div-conformance. Suitable function
spaces for the definition of discrete 1- and 2-form
representations are presented in [4]. The concrete
hierarchical basis functions of arbitrary order for
tetrahedrons defined in [7] and [8] are used for re-
spectively 1-form and 2-form discretisation.

Throughout the notation ~w(1) and ~w(2) will be
used for respectively 1-form and 2-form basis func-

tions. E.g.
~

w
(1)
ei refers to the ith 1-form basis func-

tion used to discretise an ~E field, and
~

w
(2)
bj refers

to the jth 2-form basis function used to discretise
a ~B flux density. An ~E field discretised by k basis

functions is represented as ~E =
∑k

i=1 ei
~

w
(1)
ei where

ei is the degree of freedom (DOF) associated with
the ith basis function. Putting the DOFs and basis
functions in two column vectors {e}, {w(1)

e }, we can
write ~E = {e}T · {w(1)

e }.
Only one differential operator can be applied to

each p-form and is unambiguously called the exte-
rior derivative. For 1- and 2-forms this operator
is respectively curl and divergence. The curl of 1-
forms is a subset of 2-forms. A discrete 2-form can
exactly represent the curl of a 1-form. With a dis-
crete 1-form ~A and a discrete 2-form ~B on the same
mesh, the operation ~B = ∇ × ~A has the discrete
equivalent {b} = [Ca]{a}; [Ca] is a highly sparse
circulation matrix with only 1 or -1 entries [5].

2.2 Vector Wave Equation Formulation

The vector wave equation formulation is well known
and is completely discussed in [1, §12]. Using suit-
able 1-form basis functions the Galerkin procedure
is applied to (3). Assuming homogeneous Dirichlet
boundary conditions, the semi-discrete differential
equation system

[M ]
d2{e}
dt2

+ [S]{e}+ {f} = {0} (4)

is obtained, where [M ] and [S] are the square mass
and stiffness matrices, {e} the vector of ~E field de-
grees of freedom (DOFs) and {f} the current driv-
ing vector. In [1] the calculation of the matrix en-
tries are shown; note that [M ] is equivalent to Jin’s
[T ] matrix.

Time integration is performed using the
Newmark-β method. See [1, §12] for original
references on the Newmark methods. For β ≥ 1

4
this method is unconditionally stable.

2.3 EBHD Maxwell’s Formulation

The Maxwell’s equations (1, 2) are used to imple-
ment a leapfrog scheme [3]. The fields ~E, ~H are
discretised as 1-forms and the flux densities ~D, ~B
as 2-forms. Writing time as t = n∆t where n is the
integer time-step and ∆t is the constant time step
size, we have ~E(n) and ~D(n) and half a time step
apart ~H(n+ 1

2 ) and ~B(n+ 1
2 ). Starting with known

fields and fluxes at t = n∆t,

{b}n+ 1
2 = {b}n− 1

2 −∆t[Ce]{e}n

{h}n+ 1
2 = [?b]{b}n+ 1

2 (5)

{d}n+1 = {d}n + ∆t[Ch]{h}n+ 1
2 − {j}n+ 1

2

{e}n+1 = [?d]{d}n+1. (6)

The [?b] and [?d] matrices are respectively the mag-
netic and electric discrete Hodge star operators.
The Hodge operator here transforms a 2-form rep-
resentation into an equivalent 1-form representa-
tion [6]. This is how the constitutive relations, i.e.
~H = 1

µ
~B and ~E = 1

ε
~D, are applied.

A discrete Hodge operator can be constructed by
a Galerkin process where both sides of (5) are tested
using the {w(1)

h } basis functions, resulting in

[Mh]{h}n+ 1
2 = [Pbh]{b}n+ 1

2

giving
[?b] = [Mh]−1[Pbh].

Here [Mh] is the {w(1)
h } mass matrix, and [Pbh] the

projection of {w(2)
b } onto {w(1)

h }. The matrix entries
are

Mhij =
∫

Ω

~
w

(1)
hi · ~

w
(1)
hj dΩ

Pbhij =
∫

Ω

1
µ

~
w

(1)
hi · ~

w
(2)
bj dΩ.

A discrete Hodge operator for (6) can be derived
similarly.

The above Galerkin method is not explicit since
the [Mh] and [Me] mass matrices have to be in-
verted. In [3] an explicit collocation-based Hodge
operator is outlined, but it requires the intergration
of the undefined tangential component of 2-form
basis functions at interelement boundaries. In light
of the EBHD formulation’s poor performance using
the Galerkin based Hodge operator (see Section 3)
the collocation-based operator was not pursued.

2.4 EB Maxwell’s Formulation

This formulation also based on (1, 2), discretises ~E

as a 1-form and ~B as a 2-form and was first outlined



in [4], with practical results in [5]. Because the
~E discretisation is curl-conforming (1) is trivially
verified in discrete form:

d

dt
{b} = [Ce]{e}.

More care is needed for (2). First re-write it as

ε
∂ ~E

∂t
= ∇× (

1
µ

~B)− ~J. (7)

Now a Galerkin procedure is applied by testing

both sides of (7) with { ~
w

(1)
e }. A Green’s identity

is used to transfer the curl of ~B to the testing func-
tions, since the 2-form discretisation is not curl-
conforming. The discreet counterpart to (7), as-
suming Dirichlet boundary conditions, is

[Me]
d

dt
{e} = [Pb,curl(e)]{b} − {f}.

[Me] is the {w(1)
e } mass matrix, [Pb,curl(e)] the pro-

jection of {w(2)
b } onto ∇ × {w(1)

e } and {f} is the
projection of ~J onto {w(1)

e }. The matrix and vector
entries are

Meij =
∫

Ω

ε
~

w
(1)
ei · ~

w
(1)
ej dΩ

Pb,curl(e)ij
=

∫
Ω

1
µ

~
w

(1)
ei · ~

w
(2)
bj dΩ

fi =
∫

Ω

~J · ~
w

(1)
ei dΩ.

~E and ~B are discretised half a time-step apart
as in Section 2.3. Starting with know ~E and ~B at
t = n∆t, the update equations are

{b}n+ 1
2 = {b}n− 1

2 −∆t[Ce]{e}n

{e}n+1 = {e}n+[Me]−1∆t([Pb,curl(e)]{b}n+ 1
2−{f}n+ 1

2 .

2.5 Explicit Operation

Explicit operation requires explicit time integration
and field modeling that results in a diagonal mass
matrix. The leapfrog time integration used by the
EBDH and EB formulations is explicit, as is the
Newmark-β with β = 0. Explicit time integration
will at best result in conditional stability; suitable
implicit schemes can achieve unconditional stabil-
ity.

With rectangular brick elements the mass matrix
can be diagonalised by using trapezoidal geometric
integration yielding the classic Yee FDTD with the
EB or vector wave formulations with β = 0 [9].
With a non-diagonal mass matrix, β = 0 results in
a better conditioned matrix equation since the [S]
matrix is excluded from the LHS.
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Figure 1: Frequency Response in 1x0.75x0.5m PEC Cavity.
Vertical bars represent analytical mode cutoff frequencies.

3 Results

3.1 Cavity Resonance

A PEC cavity has well known resonant modes; the
analytical solution is straightforward and can be
found in many engineering electromagnetics texts.
If a cavity is fed with a wide band pulse designed to
excite all the modes, resonant peaks should appear
at the modes’ cutoff frequencies. This serves as a
basic test for the correct functioning of a formula-
tion. In this and the follwing results, the speed of
light is normalized to 1 m/s.

A 1x0.75x0.5 m cavity is discretised with a nom-
inal edge length of 1

9 m using the mixed first-order
1- and 2-form basis functions. A random selection
of element edges is excited with a Gaussian pulse
modulated by a sine-wave, designed with a center
frequency (Fc) of 1.25 Hz and 90% of Fc band-
width. The systems are run for 4096 time-steps
with ∆t = 0.005s. The average frequency response
of a random selection of ~E-edge DOFs is measured
and is shown in Fig. 1. The wave equation and
EB formulations show the expected resonant peaks
while the EBHD formulation shows no clear peaks.
Further investigation using higher order elements
(mixed second order for 1-forms and fully linear
2-forms) showed no improvement in the EBHD re-
sults, as did geometrical refinement.

3.2 Eigen solution

The source-free semi-discrete forms of the formula-
tions are transformed to the frequency domain by
replacing d

dt by −jω and all the field/flux unknowns
except for ~E are eliminated. The remaining equa-
tion can be cast in the standard form of a general-
ized eigen problem. Solving this eigen problem on
a cavity yields the cavity mode cutoff wavenumbers
as eigenvalues. Replacing d

dt by −jω implies per-
fect time integration, hence any error in the eigen
solution is determined solely by errors in geomet-
ric field interpolation. In other words, it provides



an upper bound for the accuracy of a given scheme
using perfect time integration.

The vector wave equation formulation yields the
well known eigen system,

[S]{e} = ω2[M ]{e}.

Using the Galerkin discrete Hodge operator for the
EBHD formulation, the eigen system is

[Pde][Ch][Mh]−1[Pbh][Ce]{e} = ω2[Me]{e}.

For the EB formulation it is

[Pb,curl(e)][Ce]{e} = ω2[Me]{e}.

The respective eigen systems were solved using
the same mesh as in Section 3.1. The results are
shown in Table 1.

Formulation Mode Cutoff Wavenumber

Analytical 5.24 7.02 7.55 7.55 8.18

Wave Eqn. 5.23 7.01 7.52 7.54 8.12

EBHD 1.17 1.24 1.28 1.31 1.36

EB 5.23 7.01 7.52 7.54 8.12

Table 1: Analytic vs. Computed mode cutoff frequencies

Mirroring previous results, the EBHD spectrum
has many spurious modes. Around the expected
wavenumbers the EBHD spectrum also reveals reg-
ularly spaced spurious modes. Again, neither
higher order bases, nor mesh refinement, improved
the EBHD result; the other formulations converged
at the expected rate [7]. The Wave equation and
EB formulations are equivalent for the eigen prob-
lem since they both model exactly the same spaces.

3.3 Coaxial TEM Mode Dispersion

In [10] a waveguide result shows reasonable per-
formance using the EBHD formulation. A similar
experiment is done using the TEM mode of a coax-
ial waveguide. The TEM mode has no dispersion,
making interpretation of the results simple. A 10 m
length of Coaxial guide with inner and outer radii
of respectively 2

3 m and 1 m was simulated using a
mesh with 0.3 m nominal edge length. The TEM
mode was launched at z = 0 using a differentiated
Gaussian time waveform with a center frequency of
0.5 Hz. The response at z = 5 m was recorded; the
simulation was timestepped for 14 s, ensuring no
reflections from the short at z = 10 m have reached
z = 5 m. The phase of the transfer function from
z = 0 to z = 5 m is calculated using the FFT. The
wavenumber is extracted by dividing out the 5 m
signal travel path. The result is shown in Fig. 2.
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Figure 2: Calculated vs. Analytical Dispersion Relation
on Coaxial Waveguide

4 Conclusion

Three FETD formulations were presented, and a
procedure for making the EBHD formulation oper-
ational was discussed, as were the conditions necce-
sary for explicit operation. Numerical results for a
cavity and coaxial waveguide were presented. It
was seen that the vector wave and EB formulations
perform similarly, while the EBHD formulation suf-
fers from spurious modes in the cavity and suffers
from excessive dispersion at higher frequencies in
the coaxial waveguide.
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