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Abstract

A new method for constructing H(curl) or H(div) conforming hexa-

hedral/tetrahedral hybrid meshes of arbitrary discretisation order is pre-

sented. Tetrahedral elements that conform directly to hexahedral ele-

ments are constructed, avoiding the need for pyramidal or other joining

element types. The effectiveness of this method is investigated in a finite

element framework, and some caveats pertaining to higher order pyrami-

dal elements are raised.

Introduction

Numerical solution of full-wave or eddy current electromagnetic problems of-

ten call for H(curl) or H(div) conforming discreet representation. Conforming

representations have been defined on many element shapes. Tetrahedrons and

hexahedrons represent two largely complementary shapes. Unstructured tetra-

hedrons excel at modeling complex geometries; structured Cartesian hexahe-

drons (i.e. bricks) facilitate the efficient representation of regular geometries.

Hybrid meshes utilising mixed 1st order conforming pyramidal elements [1, 2] to

connect the tetrahedral and hexahedral regions have been presented for hybrid

FEM/FDTD PDE methods [3] and integral methods [4]. When dealing with

electrically large problems or if very high accuracy is required, the use of higher

order field representation is desirable [5]. While higher order pyramidal repre-
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sentations of up to second [1] and mixed third [2] order have been published,

they seem to suffer from spurious modes as shown below. In this Letter a dif-

ferent conforming mesh scheme is presented; suitably constrained higher order

tetrahedral elements are used to represent the hexahedral degrees of freedom

(DOFs) at the hybrid boundary. Numerical validation of this scheme shows

that spurious modes are avoided and that higher order convergence is achieved.

Furthermore, the avoidance of a third element class (i.e. pyramids) leads to

simpler program construction.

Constructing hexahedral-conforming tetrahedra

Mixed p’th order Cartesian product H(curl) hexahedral(hex) basis functions

take the form

~whex
(u) = P p

v (v)P p
w(w)P p−1

u (u)û, (1)

where u, v, w are the element-local coordinates, û, v̂, ŵ the covariant component

basis vectors and P p is a p’th order univariate polynomial. Similar definitions

hold for ~whex
(v) and ~whex

(w).

Each hexahedral face on the interface between the hexahedral and tetrahe-

dral meshes (Γ) is connected connected to two tetrahedrons as shown in Fig.

For H(curl) discretisation, basis functions must be tangentially continuous

on each hexahedral face. Using standard tetrahedral H(curl) bases complete to

the same order as the hexahedral base, this is not possible since the tetrahedral

basis functions relating to face and non-diagonal edge DOFs will be identically

zero on one of the two triangular faces.

On any hexahedral face the normally varying coordinate is constant, hence

the mixed p’th order basis functions described in (1) will contain multivariate

polynomial terms of at most order 2p− 1. Hence, tetrahedral H(curl) elements

complete to order 2p − 1 that conform to the hex-face geometry (as in Fig. 1)

can tangentially match the hexahedral basis functions exactly. A new tetra-

hedral basis that conforms to the hexahedral basis is constructed from linear
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combinations of the orginal order 2p− 1 basis. Conformance requires

n̂× ~whex
i = n̂× ~whct

i on Γ, (2)

where n̂ is the joining face normal and ~whct
i a hexahedral-conforming tetrahedral

basis function.

For mixed 1st order discretisation (DOFs as shown in Fig. 1), tetrahedral

edge functions ~wtet
u1 , ~w

tet
u2 , ~w

tet
v1 , ~w

tet
v2 , ~w

tet
d1 of the form ζi∇ζj − ζj∇ζi and ~wtet

d2 of

the form ζi∇ζj + ζj∇ζi are needed. Applying (2) and solving for ~whct
u1 ,

~whct
u1 = ~wtet

u1 + 0.5~wtet
d1 + 0.5~wtet

d2 . (3)

Similar expressions result for ~whct
u2 , ~w

hct
v1 and ~whct

v2 with only the sign of the ~wtet
d2

term changing if the edge is connected to the ending node of the diagonal. A

similar procedure using a normal continuity condition in place of (2) and H(div)

bases can be used to construct an H(div) conforming hybrid mesh.

Implementation to arbitrary order

While possible, it would be intractable to construct the hexahedral-conforming

tetrahedral bases analytically for high order discretisation. A numerically exact

solution is obtained by solving a local projection problem on each hexahedral

hybrid boundary face ΓK . Given the mixed p’th order hexahedral basis on

ΓK , whex = [~whex
1 , ~whex

2 , . . . , ~whex
nhex

], and the basis of order 2p − 1 on the con-

nected tetrahedral faces wtet = [~wtet
1 , ~wtet

2 , . . . , ~wtet
ntet

], we want to find a local

nhex × ntet transform matrix hcTK such that whct = hcTKwtet where whct is

the local hexahedral-conforming tetrahedral basis. Defining the inner product

< ~a,~b >ΓK
=

∫
ΓK

(n̂×~a) · (n̂×~b)dA and the matrices MK and PK with entries

MKij =< ~wtet
j , ~wtet

i > and PKij =< ~wtet
j , ~whex

i >, we solve

hcTK = PKM−1
K . (4)
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Used with arbitrary order tetrahedral [5] and hexahedral [6] basis functions,

straightforward implementation of arbitrary order hybrid meshes is possible.

The local hcTK matrices are assembled into a global ntot × ntet transform

matrix hcT, where ntot is the total number of DOFs and ntet the number of

tetrahedral DOFs; order 2p − 1 bases are used on the hybrid boundary and

mixed p’th order throughout the rest of the tetrahedral mesh. Hybrid system

matrices can be constructed as Ahyb = Ahex + hcTAtet
hcTt, where Ahex has

been zero extended to ntot × ntot.

Numerical Results

To test the proposed hybrid mesh, the eigen-solution of the vector Helmholtz

equation,

∇×∇× ~E − k2 ~E = 0, (5)

in a 19x23x29 m PEC cavity (speed of light normalised to 1 m/s) is obtained,

yielding the cavity mode wavenumbers. Numerical results using hexahedral,

hybrid hexahedral-tetrahedral and two different sets of pyramidal elements are

compared in Table 1. The hexahedral mesh has a cell-size of 29/4 m. The

pyramidal mesh is formed by splitting each hex-element into six pyramids. The

hybrid mesh utilises half of the hexahedral mesh; the other half is meshed with

unstructured tetrahedrons that conform to the hex faces on Γ. The hexahedral

elements apply Gauss-Lobatto mass lumping [6], making them suitable for ex-

plicit time-domain FEM methods. Both pyramidal element sets are identical

at mixed 1st order and show no spurious modes. For mixed 2nd order, the

Coulomb elements [1] (“Pyramids 1” in Table 1) suffer from spurious modes

throughout the spectrum, while the Graglia [2] pyramids exhibit a limited num-

ber of spurious modes at frequencies ranging from about 1/50 to 1/4 of the

lowest physical cavity mode eigenvalue. In Table 1, “Pyramids 2” show the first

four spurious eigenvalues, while in “Pyramids 3” the spurious values have been

removed. The hybrid mesh does not suffer from spurious modes and delivers
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accurate results.

The convergence of the hexahedral and hybrid solution eigenvalues as the

total number of DOFs increases is compared in Fig. 2. The rate of convergence

is unaffected by the use of the hybrid mesh, while the accuracy per degree of

freedom of the pure hexahedral and hybrid meshes are similar.

Conclusion

A new approach for constructing H(curl) and H(div) conforming hexahedral /

tetrahedral hybrid meshes that offers straightforward implementation of arbi-

trary order hybrid discretisations has been proposed. The correct functioning

of H(curl) hybrids has been demonstrated using the finite element method

eigen-solution of a rectangular cavity. The higher order hybrid solution errors

converge at the expected rate while being free of spurious modes. Compared

to existing hybrids using pyramidal elements, the complication of an additional

element type is removed, while avoiding the problem of spurious modes that

currently available higher order pyramidal elements have been found to suffer

from. This new approach paves the way for higher order adaptations of existing

[3, 4] hybrid mesh methods.
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Table Captions

Table 1. First four eigenvalues for a rectangular cavity

Figure Captions

Figure 1. Interface between between hexahedral and tetrahedral mesh with de-
grees of freedom required for mixed 1st order hybrid shown.

Figure 2. Convergence of hexahedral and hybrid mesh eigenvalues for mixed
order 1 through 3 discretisation.
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Solution Mode eigen-value k2
0 (rad.s−1)2 RMS total

type I II III IV error % DOFs
Analytic 0.030393 0.039075 0.045997 0.057732 — —

Mixed 1st order discrete
Hexahedra 0.028862 0.036075 0.042648 0.053793 6.78 75
Pyramids 0.030821 0.040152 0.046792 0.058448 1.88 459
Hybrid 0.029659 0.037784 0.043875 0.055175 3.80 234

Mixed 2nd order discrete
Hexahedra 0.030384 0.039048 0.045968 0.057700 0.056 854
Pyramids 1 0.007825 0.007877 0.007970 0.010426 — 2774
Pyramids 2 0.000619 0.000679 0.000683 0.000779 — 3062
Pyramids 3 0.030402 0.039100 0.046025 0.057765 0.055 3062

Hybrid 0.030394 0.039078 0.046002 0.057767 0.031 1596

Table 1:
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Figure 1:
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